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Snow cover is a significant source of water supply, mainly in mountainous regions, as snow precipitation fundamentally 

affects a catchment´s water balance. The correct simulation of the water balance with rainfall-runoff models is therefore 

important for the effective management of water resources. Three basic factors may affect the efficiency of hydrological 

models and the quality of the modelled outputs: The spatial representativeness of the input data, the model´s structure, 

and the uncertainties of the model parameters. A comparison of the variability of snow cover parameters and model 

efficiency of two versions of the HBV model using spatially lumped and distributed precipitation inputs by a multi-basin 

calibration exercise was performed in this study. Both the lumped and semi-distributed versions of the HBV model were 

calibrated for discharges, precipitation, and the air temperature on 180 catchments located all over the territory of Austria 

using data from the period 1991–2000. The analysis focused on the variability of the parameters controlling the snowmelt 

and the accumulation of the snow components of the two models. The efficiency of the models based on lumped and 

spatially distributed inputs was compared. The question as to how the catchment´s mean elevation, and the number of 

days with an air temperature below zero affects the model´s performance was targeted, too.  
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Introduction 

 

Rainfall-runoff models are often applied when solving 

various water resource problems, e.g., forecasting flood 

events, estimation of the effects of climate change, 

simulating extreme discharges, etc. Snow accumulation 

and snow-melt fundamentally affect the water balance 

and runoff in river basins. Therefore, the correct 

modeling of the duration of the snow cover and its 

properties is an important factor in improving 

the efficiency of similations of rainfall-runoff models.  

Three basic factors may affect the efficiency of 

hydrological models and the quality of the outputs 

modeled: the spatial representativeness of the input data, 

the structure of the model, and the uncertainties of 

the parameters. Model-based approaches are imperfect 

due to model biases and uncertainties about the input 

data, too (O'Connell, 1991). In this respect, and based on 

a review of several studies, Finger et al. (2015), pointed 

out that analyses of rainfall-runoff model performances 

in various environments indicated the fact that focusing 

on a model´s complexity may be less important than 

the use of proper calibration methods. Kirchner (2006) 

recommended that in addition to developing better 

models and better analytic tools, the quality of the data 

input to models should also get attention. Instead of 

fitting a pre-defined model and data structure to 

a catchment via the calibration of parameters, different 

sources of additional field data could improve 

the adequacy of representing the dominant hydrological 

processes in the modelled catchments (McMillan et al., 

2011). Respecting the spatial variability of precipitation 

and snowcover and accounting for other spatially 

nonhomogeneous basin properties (e.g. soil moisture) 

could significantly improve the quality of modelled 

hydrological responses. Khakbaz et al. (2012) discussed 

issues relating to characterizing the impact of the spatial 

distribution of rainfall and basin characteristics on runoff 

generation and the structure of a model. They 

investigated lumped and distributed calibration strategies 

and suggested that the performance of a model at 

an outlet can be improved by using a semi-distributed 

structure and spatially distributed inputs.  

A particular problem in the estimation of hydrological 

model parameters is equifinality, which has been 

discussed in-depth in a large number of studies (e.g., 

Freer et al., 1996). As a consequence, many authors have 

also attempted to constrain such uncertainties in model 

parameters by using additional data sets for multi-site 

model calibrations (e.g. Perrin et al., 2001; Hailegeorgis 

and Alfredsen, 2016; Finger et al., 2015; Knoben et al., 

2019). 
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Research on enhancing the reliability of estimations of 

snowpack parameters and their contributions to 

discharges in mountainous regions has also made use of 

multi-basin data sets. The inclusion of the remote sensing 

of satellite snow cover images during calibrations has led 

to the improvement of both snow cover and discharge 

simulations and the reduction of parameter uncertainties 

(e.g., Jiang and Wang, 2019; Lopez et al., 2020; 

Ruelland, 2020). 

We may account for different climatic conditions in 

catchments with larger elevation ranges. Various authors 

have pointed out that not respecting the different climatic 

conditions in the use of models may lead to uncertainties 

that could affect the quality of the outputs (e.g., Vaze, 

2010; Merz, 2011; Coron, 2012; Saft, 2016; Ceola et al. 

2015). Differentiating model inputs by elevation zones 

may contribute to resolving such problems.  

One challenge in correctly estimating the properties of 

snow processes for modelling is the sparse observational 

network of climatic and hydrological variables in many 

regions. The preparation of representative model inputs 

and the resulting model simulations are affected by 

the uncertainties of the measurements, their spatial 

representativeness, and the spatial interpolation of 

the point precipitation measurements. The impact of 

the spatial representation of the variability of snow cover 

properties on model simulations therefore continues to 

receive interest (Finger et al., 2015; Lopez et al., 2020; 

Ruelland, 2020).  

Since the snow routine parameters of the conceptual 

rainfall-runoff models usually cannot be obtained or 

derived directly from field measurements of 

the snowpack properties in the climatic stations, they 

have mainly been estimated by the calibration of 

the mathematical models. Recently, the streamflow-

based model calibrations were extended by remotely 

sensed snow observations in snow-dominated areas by 

making use of their increasing spatial resolution and 

reasonable spatio-temporal coverage. Several studies 

have shown that incorporating snow observations into 

the multivariable calibration of a hydrological model 

could improve streamflow estimates (see Jiang and 

Wang, 2019).  

The main objective of this paper is to observe how 

the lumped and semi-distributed versions of the HBV 

type TUW conceptual rainfall-runoff model compare 

when using lumped and spatially distributed climatic 

inputs in a multi-basin calibration in 180 Austrian 

catchments. The study closely focuses on a comparison 

of the parameters of the snow component modeling part 

of both model versions. The model versions differ mainly 

in the spatial resolution of the inputs; the semi-distributed 

version divides each catchment into elevation zones of 

200 m, while the lumped model takes every input and 

output component as a mean value for the whole 

catchment. The catchments were divided into three 

groups based on their mean elevation. The model 

efficiency and snow-related parameters were analyzed 

separately in catchments with different hypsometric 

characteristics in flat, hilly, and mountainous catchments. 

It was attempted to verify if improvement of the model 

efficiency could be achieved by only using spatially 

interpolated distributed inputs in a semi-distributed 

version of a lumped conceptual model (without using 

distributed parameter calibrations and remotely-sensed 

snow observations). The analysis also focused on 

a comparison of the variability of snow cover parameters 

of two versions of the HBV model using a multi-basin 

calibration exercise. We hypothesized that the different 

spatial resolutions of the lumped and semi-distributed 

models with regard to their input values may lead to 

observable differences, both in the variability of their 

performance and parameters, especially in catchments 

with higher mean elevations in mountainous or alpine 

regions.  
 

Methods  
 

In this study, the TUW rainfall-runoff model TUW was 

used in its lumped and semi-distributed versions (Parajka 

et al., 2007; 2009). The model is based on the philosophy 

of the Swedish HBV model (Bergström, 1995).  

The lumped version of the TUW model uses the averaged 

values of the air temperature, precipitation, and potential 

evapotranspiration as inputs over the whole catchment. 

The semi-distributed version of the TUW model 

considers spatially variable inputs over the catchments in 

200 m elevation zones. The parameters of the semi-

distributed model were considered as lumped in this 

study. Both versions have extensively been used for 

solving various hydrological problems (see e.g., Sleziak 

et al., 2016; Parajka et al., 2007; Viglione et al., 2013). 

The TUW model consists of three sub-models: the snow 

sub-model, the soil sub-model, and the runoff formation 

sub-model. Fig. 1 represents the structure of the lumped 

version of the TUW model. 

The model has 15 parameters, which are listed in Table 1 

together with the recommended ranges of their respective 

values according to Merz et al., (2011); the same ranges 

were used in this study. 

The snow submodel simulates the accumulation of water 

in a snowpack and inputs water from the melted snow to 

the catchment. At the centre of interest of this study was 

the behaviour and variability of the 5 snow routine 

parameters of both versions of the TUW model.  

Snow accumulation and snowmelt are controlled by 

the following parameters:  

 the snow correction factor (SCF), which represents 

the uncertainty in the precipitation measurements 

input in the winter and the large spatial variability of 

the snow cover; the snowfall is corrected by this 

corrective snow factor; 

 the degree-day factor (DDF); a factor influencing 

the melting of snow; 

 threshold air temperature (Tr); precipitation above 

this is considered as rain; 

 threshold air temperature (Ts); below which, 

precipitation is considered as snow; 

 threshold air temperature (Tm); above which, melting 

in the snowpack takes place. 
 

For calibrating the model in this study, the DEoptim 

differential evolution algorithm was used (Sleziak et. al., 

2017), and the warm-up period was set at one year. 
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The objective function, which is described in Eq. 1, 

combined the well-established Nash-Sutcliffe efficiency 

and the logarithmic Nash-Sutcliffe efficiency (log NSE). 

The NSE and log NSE coefficients range from -∞ to 1, 

where 1 indicates a perfect simulation, i.e., an absolute 

equality between the observed and simulated flows. 

While the NSE is considered more appropriate for high 

flows, the log NSE is more appropriate for low flows 

(Merz et al., 2011). 

The following NSE and log NSE formulas were used:  

 

NSE = 1 −
∑ (𝑄𝑠𝑖𝑚,𝑖−𝑄𝑜𝑏𝑠,𝑖)

21

𝑖=1

∑ (𝑄𝑜𝑏𝑠,𝑖−𝑄𝑜𝑏𝑠)
21

𝑖=1

                (1) 

 

 

logNSE = 1 −
∑ (log⁡(𝑄𝑠𝑖𝑚,𝑖)−log⁡(𝑄𝑜𝑏𝑠,𝑖))

21

𝑖=1

∑ (log⁡(𝑄𝑜𝑏𝑠,𝑖)−log⁡(𝑄𝑜𝑏𝑠))
21

𝑖=1

               (2) 

 

where 

𝑄𝑠𝑖𝑚 – are the simulated mean daily flows, 

𝑄𝑜𝑏𝑠 – are the observed mean daily flows, 

𝑄𝑜𝑏𝑠 – is the average of the observed flows. 

 

The objective function (RME) was defined as:  

 

𝑅𝑀𝐸 = ⁡
𝑁𝑆𝐸

2
+

𝑙𝑜𝑔𝑁𝑆𝐸

2
                 (3) 

 

Input data  

 

The calibration of the model was performed on data from 

180 catchments, which are distributed over the whole 

territory of Austria. These data have also been 

extensively used in previous modeling studies, e.g., by 

Viglione et al. (2013) and Sleziak et al. (2016). 

The catchment areas varied from 14.2 km2 to 6214 km2. 

Before processing the data, quality flags, missing data, 

etc., were visually inspected. Catchments that were 

selected which were not affected by an anthropogenic 

influence, e.g., by dams, canals, or any other artificial 

runoff regime transformations.  

The input data (rainfall, runoff, potential evaporation, air 

temperature) in daily time steps from the period 1.1.1991 

to 31.12.2000 were interpolated for the lumped TUW 

model version from point measurements taken across 

Austria from 1091 stations by the external drift kriging 

method (Sleziak et al., 2017). The runoff data were from 

180 gauging stations of the Austrian Hydrographical 

Service. The potential evaporation data were calculated 

with the Blaney-Criddle method (Parajka et al., 2003). 

The rainfall and air temperature input data for the semi-

distributed version of the TUW model were taken from 

the Spartacus database (Hiebl et al., 2016) and were 

interpolated into the hypsometric zones by 200 vertical 

meters. The potential evaporation was calculated with 

the Blaney-Criddle method in the same hypsometric 

zones.  

In order to separate the effect of the prevailing climatic 

conditions and the respective runoff regimes in 

the analysis of the variability of the snow parameters on 

the results, we clustered the catchments into three groups 

based on their respective mean elevations:  

 the first group (86 catchments) with mean elevations 

between 0–1000 m.a.s.l;  

 the second group (80 catchments) with elevations 

between 1000–2000 m.a.s.l; 

 the third group (14 catchments) with elevations above 

2000 m.a.s.l..  

 

The first  group  includes   catchments   where  the major  

 

 

 

 
 

Fig. 1.  Schematic structure of the lumped version of the TUW model (Sleziak, 2017). 
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contributor to the runoff is liquid precipitation; this group 

is labeled the “Lowland” type. The second group 

includes catchments where a significant part of the runoff 

is also contributed to by meltwater and is referred to as 

the “Hilly” type; and the third group represents 

the “Alpine” type of catchments, where snow and 

glaciers largely impact the runoff from the catchments. 

In Fig. 2 we can see the location of the selected 

catchments, which are clustered into three groups and 

color-coded as green – Lowland, orange – Hilly, red – 

Alpine. 

The left graph in Fig. 3a shows the median of the number 

of days with a temperature below zero in the three groups 

of catchments. The right graph, Fig. 3b, represents 

the mean elevation of the catchments (726.2 m.a.s.l in 

the lowland catchments, 1385.7 m.a.s.l in the hilly catch-

ments, and 2212.1 m.a.s.l in the alpine catchments). We 

can observe that the triangles indicate that a portion of 

the days with a temperature below zero is directly related 

to the mean elevation of the catchments; therefore, 

the separation of the catchments into groups also reflects 

the differences in the snow regimes. 

 

 

 

Table 1.  The TUW model parameters and their recommended range (Merz et al., 2011) 

Abbreviations Description of the model parameters  Range 

 1. SCF snow correction factor 0.9–1.5 [-] 

 2. DDF degree day factor 0.0–5.0 [mm/degC/day] 

 3. Tr threshold temperature above which precipitation is rain 1.0–3.0 [degC] 

 4. Ts  threshold temperature below which precipitation is snow -3.0–1.0 [degC] 

 5. Tm  threshold temperature above which melting starts -2.0–2.0 [degC] 

 6. LPRAT parameter related to the limit for potential evaporation 0.0–1.0 [-] 

 7. FC field capacity, i.e., max soil moisture storage  0–600 [mm] 

 8. BETA the non-linear parameter for runoff production 0.0–20.0 [-] 

 9. K0 storage coefficient for a very fast response  0.0–2.0 [days] 

10. K1 storage coefficient for a fast response  2.0–30.0 [days] 

11. K2 storage coefficient for a slow response 30.0–250 [days] 

12. LSUZ threshold storage state, i.e., start of the very fast response if exceeded 1.0–100 [mm] 

13. CPERC constant percolation rate  0.0–8.0 [mm/day] 

14. BMAX maximum base at low flows 0.0–30.0 [days] 

15. CROUTE free scaling parameter 0.0–50.0 [days2 /mm] 

 

 

 
 

Fig. 2.  Location of the selected 180 Austrian catchments clustered into elevation 

zones and color-coded as green – Lowland, orange – Hilly, and red – Alpine. 
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Fig. 3.  Illustration of the interdependence between the mean number of days with 

a temperature below zero and the mean elevation of the catchments divided into the three 

groups, green – Lowland, orange – Hilly, and red – Alpine catchments. 

 

 

 

Results and discussion 

 

Comparing the distribution of the RME efficiency 

measure of the calibration of both model versions in 

the groups of catchments (Figs. 4 and 5) shows notable 

differences in all three groups. The boxplots shown 

the minimum and maximum value of RME, first and 

third quartile and mean value represented by black cross. 

We assessed the model efficiency over three different 

groups of catchments (i.e., green – Lowland, orange – 

Hilly, red – Alpine).  

In the lowland catchments, where the soil-moisture 

regime is the more dominant runoff generation 

mechanism, we did not expect a significant contribution 

of the snow precipitation to the runoff. The RME values 

were 0.64 in the lumped version of the TUW model and 

0.76 in the semi-distributed version (Figs. 4 and 5) in 

these catchments. A lumped version of the model shows 

a slightly lower performance in comparison with 

the semi-distributed version. This means that the semi-

distributed model also performs better in the lowland 

catchments, which could be caused by the lower spatial 

variability of the input data.  

The Hilly type of catchments with a mean elevation 

between 1000–2000 m.a.s.l, have seasonal precipitation 

regime characteristics with the main proportion of liquid 

precipitation in the summer season and solid 

precipitation in the winter season. This means that 

the snow routine of the rainfall runoff model has 

a stronger influence on the final efficiency of the model´s 

performance more than in the lowland group of 

catchments. The median RME values were 0.67 for 

the lumped version and 0.81 for the semi-distributed 

version of the TUW model (Figs. 4 and 5). Again, we can 

observe that the semi-distributed model outperformed 

the lumped version, probably due to the different spatial 

resolutions of the inputs into both versions of the model.  

The third group of catchments with alpine characteristics 

is the group with snow-dominated catchments, where 

the melting of accumulated snow precipitation mainly 

contributes to the catchment´s runoff. In part of 

the catchments in the alpine group catchments, we may 

also consider a significant contribution to runoff from 

glaciers, which represent an important storage of water in 

high elevation zones. In the alpine group of catchments, 

the median RME values were 0.51 for the lumped version 

and 0.88 for the semi-distributed version of the TUW 

model. Here, we can observe a great difference in 

the performance between both model versions. 

The lumped version of the TUW model showed poor 

performance. The spatial differentiation of the model 

inputs in the semi-distributed version of the model, which 

divides catchments into elevation zones, can better reflect 

the snow regime influenced by the climatic differences 

between the lowest and highest parts of the catchments.  

In general, by also comparing Figs. 4 and 5, we can see 

that the semi-distributed version outperformed 

the lumped model. We observed that the results of 

the lumped version of the TUW model showed a poorer 

performance in catchments with a mean catchment 

elevation above 2000 m.a.s.l and with alpine climate 

characteristics (Fig. 4). The semi-distributed version of 

the TUW model performed better in catchments in 

the Alpine group compared to those in the Lowland or 

Hilly groups of catchments (Fig. 5). The main reason for 

the differences in the quality of the calibration results of 

both versions of the TUW model may be attributed to 

the effects of the spatial distribution of the input of 

the climatic values. Since these values were more 

pronounced in the Alpine group, it could be expected that 

the spatially distributed inputs of the winter precipitation 

improved the model´s performance. 

In the next step the median values of the snow sub-model 

parameters were compared in the three groups of 

catchments (Fig. 6), and the parameter variances in 

the boxplot charts were compared. The boxplots show 

the minimum and maximum value of each parameter, 

first and third quartile and mean value represented by 

black cross (Fig. 7–11).  

We can observe differences in the general behavior of 

the variability of the snow routine parameter among 

the   catchment   groups.  Fig. 6a   shows  that  the  snow  
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Fig. 4.  Runoff model efficiency boxplot of the lumped model version in all 

the catchments divided into three groups: Green –Lowland, orange – Hilly, and red – 

Alpine catchments. 

 

 

 
Fig. 5.  Runoff model efficiency boxplot of the semi-distributed model version in all 

the catchments divided into three groups: Green – Lowland, orange – Hilly, and red – 

Alpine catchments. 

 

 

 

correction factor (SCF) is the highest for both models in 

the Alpine group; on average, it practically does not 

strongly correct the winter precipitation amounts in 

the other two clusters as the boxplot chart (Fig. 7) 

indicates.  

This could be expected, and it also shows that the multi-

site calibration was able to capture this behaviour across 

all the catchments.  

The distribution of the values of the degree-day factor 

(DDF) in Figs. 6b and 8 shows a different pattern: 

the highest values can be observed for the semi-

distributed model in the red group, followed by 

the orange and green catchments. This is consistent with 

the idea that snowmelt (and snow accumulation, too) has 

to be most pronounced in an Alpine region, followed by 

the hilly and lowland catchments. It can be expected in 

the behaviour of the lumped model that the snow cover 

may have a greater temporal and spatial variability in 

the Lowland group. Consequently, the snowmelt can 

have a shorter duration and be more intensive in some of 

the lowland catchments, which can explain 

the distribution and peaking of the median of the DDF 

parameter there.  

In the threshold temperature above which precipitation is 

considered to be liquid (Tr), (Figs. 6c and 9), we can 

observe consistency in the values for both the semi-

distributed and lumped versions in the Alpine and 

Lowland groups, which is to be expected and acceptable. 

In the Alpine group of catchments the Tr parameter 

reached almost the same value of +3oC for all 

the catchments analysed in this group. The lower median 

value for the lumped model in the Hilly group of 

catchments could be connected to the larger variability of 

the duration and extent of the snowpack at these altitudes, 
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but that would need a detailed catchment-based analysis, 

which was not performed here.  

In Figs. 6d and 10, the threshold temperature below 

which precipitation is snow (Ts) gave similar calibration 

values for all three groups of catchments and both 

versions of the TUW model. It is physically acceptable 

that at lower elevations, the snow accumulation is 

connected with air temperatures below zero (for majority 

of chatchments Ts is about -2.5oC), whereas in high 

elevations, this temperature can be higher. This could be 

observed especially in the Alpine group of catchments, 

where the median value of this parameter reaches a value 

of about +1oC. 

The threshold  temperature  above  which  melting starts 

(Tm) (Figs. 6e and 11), is an important parameter that 

indicates the start of snow melting and thereby runoff 

generation. Whereas its similar values in the lumped 

model´s representation of the spatial variability of 

the inputs in all three groups are to be expected, 

the patterns and significant changes in the parameter 

values in the semi-distributed version of the TUW model 

are difficult to explain and could be connected to the lar-

ger variability of the duration and altitudinal variability 

of the extent of the snowpack in the orange altitudes (and 

maybe by the selection of the altitudinal thresholds, too). 

This would need a detailed catchment-based analysis and 

maybe a more differentiated subdivision of this group of 

catchments, which was not performed here.  

 

 

 

 
 

Fig. 6.  Comparison of the median values of the snow submodel parameters for both 

model versions. 

 

 

 
 

Fig. 7.  Boxplots of the distribution of the SCF parameter in all the catchments divided 

into the three groups. Green – Lowland, orange – Hilly, and red – Alpine catchments.  
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Fig. 8.  Boxplots of the distribution of the DDF parameter in all the catchments divided 

into the three groups. Green –Lowland, orange – Hilly, and red – Alpine catchments.  

 

 

 
 

Fig. 9.  Boxplots of the distribution of the Tr parameter in all the catchments divided 

into the three groups. Green – Lowland, orange – Hilly, and red – Alpine catchments. 

 

 

 
 

Fig. 10.  Boxplots of the distribution of the Ts parameter in all the catchments divided 

into the three groups. Green – Lowland, orange – Hilly, and red – Alpine catchments. 

 

 

 
Fig. 11.  Boxplots of the distribution of the Tm parameter in all the catchments divided 

into the three groups. Green – Lowland, orange – Hilly, and red – Alpine catchments. 



Acta Hydrologica Slovaca, Volume 22, No. 1, 2021, 40 – 49 

48 

 

Conclusion 

 

Snow cover is a significant factor for the supply of water 

for diverse uses and is an important part of runoff 

processes, especially in mountainous regions. It is 

necessary to observe and evaluate how rainfall-runoff 

models simulate each runoff component in order to 

ensure reliable simulations that can improve decisions in 

solving water resources management problems. In this 

study, we compared the model efficiency of the HBV 

type TUW rainfall-runoff model in its lumped version 

and semi-distributed versions. We performed multi-site 

calibrations of both models for 180 catchments across 

Austria, which were divided into three groups, according 

to their respective mean elevation. For the lumped TUW 

model version, the input data (rainfall, runoff, potential 

evaporation, air temperature) in daily time steps from 

the period 1.1.1991 to 31.12.2000 were interpolated from 

point measurements across Austria (Sleziak et al., 2017) 

from 1091 stations by the external drift kriging method. 

The rainfall and air temperature input data for the semi-

distributed version of the TUW model were taken from 

the Spartacus database (Hiebl et al., 2016) and were 

interpolated into the hypsometric zones by 200 vertical 

meters.  

We analyzed if and how the mean elevation of 

the catchments and the spatial variability of the input 

values can affect both the calibration efficiency and 

the values of the snow sub-model parameters. The results 

of the runoff model efficiency showed that the semi-

distributed version of the model performed better in all 

the catchments. The efficiency of the lumped version 

mainly struggled in the group of high altitude 

catchments. With the variations of the snow sub-model 

parameters, we can conclude that the overall behavior of 

the parameter values was physically consistent with 

the expectations for all the parameters, except for 

the threshold temperature above which melting starts. 

Since this can play a huge role in the estimation of 

the amount of water melted from snow, its behavior in 

the multi-site calibration requires further analysis, which 

could improve runoff model efficiency in the semi-

distributed model version. The spatial differentiation of 

the model inputs proved to be beneficial and the multi-

site calibration in the attitudinally grouped catchment 

clusters led to better insights into the physical 

consistency and reliability of the snow parameters in 

the case of the TUW model.  
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