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Probabilistic hydrological forecasts used in forecasting offices are often based only on different variants of precipitation 

forecast, which are the dominant source of forecast uncertainty during flood periods. The proposed method called dressing 

extends the uncertainty of meteorological forecast input by estimating the uncertainty of hydrological modeling using 

statistical analysis of deviations derived from simulated and observed flows. Adjustment of probabilistic flow forecasts is 

applied by post-processing without interfering with the hydrological model itself. The method is focused primarily on 

runoff phases, where heavy precipitation is not expected and the dispersion of the original ensemble is insufficient. 

A comparison of the success of short-term operative ensemble predictions of river discharge in the upper Vltava basin 

before and after adjusting by the dressing method showed a clear improvement in statistics.  
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Introduction 

 

Simplification of reality in prediction models, inaccurate 

input data and other sources of uncertainty lead to 

predictions that always, more or less, differ from 

observation. Lack of accuracy of forecasts is the most 

important limitation in their use, and one solution is to 

quantify their uncertainty. Therefore, flow forecasts often 

include two basic products: 1.) deterministic forecast, 

single flow calculated from one selected set of causes 

(precipitation, saturation, etc.) and 2.) ensemble 

(probabilistic) forecast, model calculation is repeated 

for different scenarios of inputs and settings of 

the hydrological model. Ensemble forecast allows 

forecasters to estimate the risks (probabilities) of 

exceeding specific threshold. It also makes it possible to 

extend the time advance of forecasts and use them more 

effectively not only in flood protection but also at low 

flow rates.  

In the case of hydrological river flow prediction, 

the ensemble forecasts are very often based solely on 

different variants of precipitation and temperature fore-

casting. The uncertainty of hydrological modelling 

(observed inputs, initial conditions, model parameters, 

etc.) is omitted. This simplification is acceptable in flood 

forecasting of upper basins when the effect of the un-

certainty of the precipitation forecast is so dominant that 

the expression of uncertainty by the ensemble forecast 

calculated in this way is acceptable. However, hydro-

logical forecasts are gradually being used for purposes 

other than flood protection. Probability predictions are 

also important for dam manipulation planning, 

hydropower management or for river water use in times 

of drought, even in times of insignificant fluctuations or 

decrease inflows. In addition, a functional ensemble 

system in times of average flows is important for gaining 

confidence in probabilistic predictions as a whole. 

Probabilistic predictions should therefore contain 

quantified information on the uncertainty of the whole 

prediction system, not just precipitation forecast. 

The presented method includes the uncertainty of 

hydrological modelling into the calculation of 

the ensemble hydrological forecast. It is primarily 

intended for the improvement of probabilistic forecasts 

based exclusively on precipitation variants. The method 

was inspired by the dressing method published by Pagano 

et al. (2012). It is based on the analysis of historical 

deviations of simulated and observed flows and 

the subsequent construction of error models. The method 

was tested in order to increase the success of operational 

ensemble predictions which serve as an irreplaceable 

source of information for river navigation in the Elbe and 

for the management of water reservoirs with regard to 

optimizing electricity production and minimizing 

the impact of drought. It is applied as a post-processing 

procedure, which means adjusting the hydrological 

forecast after its output from the hydrological model. 

The advantage of post-processing is easy implementation 

into operation without disrupting other established 

procedures.  
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Hydrological forecast uncertainty  
 

Understanding the reasons why hydrological forecasts 

deviate from observations is key step in developing 

the success of both deterministic and probabilistic 

forecasts. Krzysztofowicz (1999) decomposes the total 

uncertainty into input uncertainty and hydrological 

uncertainty.  

The uncertainty of the inputs is solved by pre-processing 

methods, which precede the calculation itself in 

the prediction model. The observed elements 

(precipitation, temperatures, flows) are usually not 

subject to such a significant error. Their uncertainty is 

usually neglected, or they are reduced or quantified using 

some of the pre-processing methods, for example 

(Schaake et al., 2004). The dominant source of 

uncertainty in the period of heavy rainfall is 

the quantitative precipitation forecast from numerical 

weather forecasting models. Different precipitation 

variants are therefore fundamental and often also the only 

quantified uncertainty for the probabilistic hydrological 

forecast. Probabilistic hydrological forecasts based only 

on different precipitation variants suffer mainly from an 

insufficient variance of variants during the precipitation-

poor period. In these cases, the more significant is 

hydrological uncertainty. The distinction between 

meteorological and hydrological uncertainty and 

independent work with them was used, among others, in 

the work of Demargne et al. (2013) and Verkade et al. 

(2017).  

Hydrological uncertainty is usually adjusted by post-

processing methods, which stand between the output of 

the forecast from the model and its final publication for 

users. Statistical post-processing is simply a model that 

uses the relationship between the prediction and 

the observed element (Fig. 1). There are a number of 

statistical post-processing methods, from a simple 

percentile method through more complex statistical 

procedures such as the Kalman filter or the Bayesian 

method to the application of neural networks. 

An overview of post-processing methods in hydrology 

was published for example, by Li (2017).  

The  dressing   method   combines   the  already  created  

hydrological ensemble forecast, which is based on 

the probabilistic prediction of precipitation, with 

the statistical distribution of deviations of hydrological 

modelling, and thus achieves a comprehensive 

description of the entire uncertainty of the hydrological 

forecast. 

 

Materials and Methods 

 

Hydrological forecasting system AquaLog (Krejčí and 

Zezulák, 2009) was used for the calculation of forecasts 

needed for method design and assessment. This system is 

the main tool for real-time hydrological forecasting in 

the Czech Republic in the Labe basin. AquaLog model 

consists of continuous SAC-SMA (Burnash, 1995) 

precipitation-runoff component and its operation is 

largely automated, excepts for assimilation of simulated 

flow to the last measured discharge. The upper Vltava 

river basin (tributary of the Elbe) was selected for testing 

the method. The catchment with area of 12105 km2 is 

divided into 45 sub-basin delimited by water gauging 

stations with the observed discharge (Fig. 2). 

Three statistical methods commonly used in the field of 

ensemble predictions verification were used for 

evaluating the success of the dressing method. They 

focus on the reliability, the skill and the conditional 

verification of ensemble prediction. The rank histogram 

(sometimes called Talagrand diagram) was used for 

assessing the spread of the prediction ensemble in 

relation to real observational variability. The Brier score 

is a suitable criterion for verifying a categorical 

prediction from the point of view of the accuracy of 

a probabilistic prediction when we examine whether 

a defined phenomenon did/didn’t occur. It answers 

the question of how big the probability prediction error is 

(0 if it does not happen and 1 if it does happen). 

The benefit of the last used ROC (relative operation 

characteristics) criteria lies in its ability to distinguish 

between the occurrence and non-occurrence of 

a particular event for a given condition. All the mention 

methods are in detail described in WMO (2021). Basic 

interpretation of rank histogram and ROC plot used in 

Results chapter is shown on the Fig. 3.  

 

 

 
Fig. 1.  Scheme of statistical post-processing of hydrological forecast (Li, 2017). 
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Fig. 2.  The upper Vltava river basin with forecasted water gauging stations. 

The stations with label are mentioned in the chapter Method calibration and results. 

 

 

 
 

Fig. 3.  Basic interpretation of rank histogram and ROC plot. 

 

 

Dressing method  

 

Dressing is designed to modify the probabilistic 

hydrological forecast calculated from the meteorological 

forecast ensemble. The uncertainty of hydrological 

modelling is expressed by an error model, which is 

derived from the statistical distribution of deviations 

between historical flow forecasts and the observed flow 

for different lead times. 

Historical flow forecasts were calculated by replacing 

the predicted precipitation with observed precipitation to 

clear the influence of precipitation forecast uncertainty 

on forecast error. The method of calculating historical 

forecasts as well as a number of forecasts is essential for 

the successful application of the dressing method. 

Historical forecasts should well represent the uncertainty 

of hydrological modelling in real-time operations and 

should cover as many runoff variants as possible. 

Because the AquaLog hydrological forecasting system is 

built on continuous models, we assume that deviations of 

automatically calculated historical forecasts from 

the observed flow well represent the uncertainty of 

hydrological modelling. Uncertainty is expressed as 

a whole without distinguishing between individual 
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sources of uncertainty (input data, initial conditions, 

model structure, operational control, etc.). 

 

Error model 

 

Although historical forecasts are not affected by 

uncertain precipitation prediction, the magnitude of 

the errors of historical forecasts significantly increases 

with the lead-time. This is due to two facts. (1) 

The forecast is in the last phase of the calculation 

assimilated to the last observed flow, which eliminates 

the error in short lead-time. (2) The forecast for 

downstream water gauging stations is in short advance 

based on a more reliable channel routing model with 

input of observed discharge from the upper station. After 

exceeding the travel time of water among two water 

gauging stations the observed discharge is replaced with 

simulated discharge, which contains errors from the less 

reliable rainfall-runoff model. It is obvious that specific 

error models for different lead-time as well as for 

different water gauging stations are required.  

Error models were constructed according to 

the frequency of flow multiplicative deviations Qdif : 

 

𝑄𝑑𝑖𝑓𝑝 =
𝑄𝑜𝑏𝑠𝑝

𝑄𝑠𝑖𝑚𝑝
                   (1) 

 

where  

Qsimp – is the forecasted flow in prediction lead time p,  

Qobsp – is the observed flow in prediction lead time p. 

 

With a short lead time, most of the deviations Qdif 

derived from the historical forecasts are close to number 

one. With the increasing lead, the standard deviation, as 

well as the variance of deviations, increase (see Fig. 4). 

For some water gauging profiles, there is an uneven 

distribution of overestimated and underestimated 

forecasts in the error models. It indicates systematic bias, 

which is related to the calibration of the hydrological 

model. The error model created in this way adjusts 

the ensemble prediction in two ways. (1) It expands 

the variance of the hydrological ensemble calculated 

according to precipitation variants. (2) It corrects 

the systematic error of the hydrological model (bias). 

Pagano (2012) uses one error model for each water 

gauging profile. The advantage of this approach is a small 

fluctuation of the error models because they are 

calculated from a large number of historical forecasts. 

One set of error models for each forecasting point also 

facilitates the application of the method to daily 

operation. In fact, it is clear that the uncertainty of the 

hydrological model differs for different runoff phases. 

The increase of forecast errors with a lead-time for the 

period without precipitation with steady river discharge 

and for the period when heavy precipitation is expected 

varies significantly. 

The dynamic construction of the error model proved to 

be a suitable solution to this problem. For each 

hydrological forecast, a number of the most similar 

historical forecasts are selected. The specific error model 

is built from this selection. This means that the error 

model differs not only for each water gauging profile and 

the lead-time but also according to the type of runoff 

phase. The dressing method is combined with the method 

of the historical analogue (Li, 2017). Nash-Sutcliffe 

coefficient was chosen as a criterion for the selection of 

historical forecast analogues. Its calculation is based on 

equation (2): 
 

NS = 1 −
∑ (𝑆𝑖−𝑂𝑖)

2𝑁
𝑖=1

∑ (𝑂𝑖−�̅�)
2𝑁

𝑖=1

                  (2) 

 

where  

Si – is the discharge of the current forecast at the time i,  

Oi– is the discharge of the historical forecast at the time i, 

Ō – is the average discharge of the historical forecast. 

 

The unique error model for each forecast is more correct 

because it doesn’t mix different runoff phases with 

different errors into one error model. The other advantage  

 

 

 
Fig. 4.  Error model (distribution of frequency of multiplicative deviations Qdif) for 

different lead time. Coloured lines indicate percentiles of the distribution of deviations. 
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of dynamic construction of the error model is 

the elimination of forecasts which are not suitable for 

the dressing method, ie. forecasts that don’t have 

a sufficient number of similar historical predictions 

(Fig.5). The time development of these forecasts is so 

dynamic that it is difficult to find enough similar 

historical forecasts. Error models built from lower 

numbers or less similar discharges can give too large 

variance and unreal estimation of forecast uncertainty. 

Testing the method proved that the vast majority of 

removed forecasts was from the high flow period when 

the dominant source of uncertainty is the quantitative 

precipitation forecast, and therefore the original 

ensemble, based on variants of precipitation forecasting, 

usually provides a sufficient estimate of forecast 

uncertainty. 

The successful application of the method is related to 

the setting of the minimum value of the NS coefficient, 

the number of historical floods required for the error 

model and the length of the processed time series. 

The minimum value of the NS separates historical 

forecasts suitable and not suitable for the error model. 

The number of chosen historical forecasts determines 

the reliability of the error model and the length of the 

time series of the forecast has a similar effect. In the case 

of forecasts with a very short lead-time, the length of time 

series should be extended to include observed data 

because autocorrelation between the observed and 

the predicted flow is usually very strong.  

Setting the method, which means a high degree of 

similarity between the adjusted forecast and historical 

forecasts, gives a better chance for a more accurate 

estimate of the uncertainty of hydrological modelling, on 

the other hand, it reduces the number of forecasts that can 

be processed by the method. Finding the optimal 

compromise between the number of processed 

predictions and the success of the method was the subject 

of method calibration. 

 

From error model to ensemble forecast 

 

The error model was expressed by 9 levels of probability 

of exceeding from the deviations Qdif ordered by size. 

The levels correspond to percentiles P0.1; P0.2; P0.3 to P0.9 

(see Fig. 3). Each hydrological forecast (each member of 

the forecast ensemble) was divided into 9 forecasts 

multiplying the flow by nine Qdif values for each lead 

time of the forecast. This created a new ensemble nine-

time larger than the original ensemble. For example in 

the case of hydrological forecast ensemble based on 17-

member precipitation variants from ALADIN-LAEF 

system extended 153-member was created. 

However, the number of members of the hydrological 

forecast ensemble should not change after post-

processing for two reasons. (1) Some forecasts are not 

suitable for the dressing method due to too few similar 

historical forecasts. (2) Post-processing, in general, 

should not affect further processing of forecasts 

(publications, archiving). For these reasons, the next step 

is to reduce the number of ensemble members to 

the original count. From the several tested procedures, 

a simple percentile selection method was finally chosen. 

The members of the extended ensemble were sorted by 

the size based on the selected criteria (average flow, or 

maximum flow, or a combination of multiple indicators) 

and every 9th member was chosen. The disadvantage of 

this approach is that new ensemble members don’t have 

to be derived from the same member in the original 

ensemble. Therefore some variants, typically with 

secondary waves, may not appear in the new ensemble. 

However, the variance of the predictions according to 

the selected criterion (average flow, maximum flow, etc.) 

is expressed correctly. 

 

Method calibration and results 

 

Calibration and testing of the post-processing method 

dressing with a dynamically generated error model 

consisted of (1) finding optimal parameters for building 

the error models (2) comparison of the assessment of 

original and modified hydrological ensemble forecast.  

The set of historical hydrological forecasts covered of 

2780 episodes from the period 2012 to 2020. They were 

calculated for 40 forecasted points in the Upper Vltava 

river basin as a time series of discharge values with 

1 hour time step and 66 hours lead time. The time series 

of predicted discharge started always at 7:00 AM, which 

is the time zero of real-time forecast. This may be 

important in building an error model because some 

forecast errors can be affected by the daily development 

of weather, especially air temperature. The minimum 

number of historical forecasts required for the building of 

the error model was set at 20 cases. Forecasts were 

compared without including any section of observed 

flows that precedes the predictions. Calibration was 

focused on finding the optimal size of the NS coefficient. 

For the calibration and the testing of the performance of 

the method, 270 ensemble hydrological forecasts 

calculated in real-time operation in the years 2020 to 

2021 were used. These ensembles were based on 17 

variants of precipitation from the ALADIN-LAEF 

forecast system with a time step of 1 hour and 66 hours 

lead-time. 

With a high degree of similarity (NS>0.7) between the 

adjusted forecast and its historical analogues, the best 

statistics of improvement were obtained. Unfortunately, 

the rate of forecasts that were adjusted by post-processing 

fell to units of per cent. For the criterion of low degree of 

similarity (NS>0), between 95 and 99% of all forecasts 

have already been adjusted by dressing method. 

However, in this case, the variance of the error models 

was too large and they produced worse results, especially 

in the too-large spread of the adjusted ensemble of 

hydrological forecasts. The size of NS between 0.2 and 

0.3 turned out to be the optimal value, which allowed the 

adjustment of approximately half of the predictions.  

The success of river flow forecast can be viewed in 

different ways and there isn’t one perfect evaluation 

criterion. Therefore three statistical methods were 

selected for verification of dressing. The positive effect 

of the adjustment of forecasts was reflected above all in 

the widening of the spread of ensemble members. 
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Insufficient spread of original ensemble forecast caused 

that there were too frequent cases where the observed 

flow was behind the edge of the ensemble members. It is 

manifested as too big bars in the rank histogram (Fig. 6). 

After applying dressing with appropriate parameters 

the frequency of position of observed discharge between 

members ensemble forecast was more equal.  

Methods  based  on  the evaluation  of  the probability of  

exceeding a certain discharge threshold showed 

significant improvement in the area of average and 

below-average flow. Furthermore, there was a high rate 

of adjusted forecasts in this interval of discharge. 

Towards higher flows, the rate of adjusted forecasts 

decreases and the effect of post-processing disappears 

(Fig. 7). The percentage of adjusted forecasts, as well as 

improvement rate, varies among water gauging profiles.  

 

 

 
Fig. 5.  Example of post-processing with the Dressing method where some 

of the original member weren’t processed because of weak error model. 

 

 

 

 
Fig. 6.  Rank histograms of the frequency of the observed average discharge between 

17 members of forecasted ensemble of average discharge. Comparison of real-time 

forecast and the forecast adjusted by post-processing. 
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Fig. 7.  Brie Score and ROC curve for ensemble hydrological forecasts for Ličov water 

gauging station (basin area 126 km2). Comparison of evaluation of original real time 

forecasts and adjusted forecasts by dressing method.  

 

 

 

It is related to different variability rainfall-runoff 

conditions and the influence of water constructions 

(weirs, dams). 

 

Discussion 

 

The estimation of hydrological modelling uncertainty 

using the dressing method depends largely on the extent 

of the archive of historical forecasts and on the fact 

whether historical forecasts correspond the uncertainty of 

hydrological modelling of real-time operations. 

The archive of 2780 historical forecasts for a period of 

9 years provided a sufficient database for post-processing 

forecasts with little variability, mostly average or below-

average flows. Better results can be expected by 

expanding this archive because it should cause more 

similarity between the current forecast and historical 

analogues. 

Historical forecasts in which the precipitation forecast is 

replaced by observed precipitation cannot be calculated 

in real-time operation but must be prepared in automatic 

calculation afterwards. Forecasting systems where 

the operation is highly interactive, e.g the hydrologist 

significantly interferes with the setting of the initial 

conditions, or even the parameters of the hydrological 

model and adjusting the forecast are not suitable for 

the application of this method. This is because 

a significant part of the uncertainty of hydrological 

modelling is associated with hydrologist decision-

making, which cannot be transferred to the automatic 

calculation of historical forecasts. However, 

the development of hydrological forecasting models, 

especially the increase of their spatial resolution, leads to 

more automatic real-time operations. 

Recalculation of historical forecasts even in very 

complex hydrological model is possible. In comparison 

with numerical meteorological models, which are 

extremely demanding on the computing capacity of 

computers it is relatively easy and quick to update 

the archive of historical forecasts in case of changes in 

the structure of the model or its parameters. These facts 

open up space for more frequent use of post-processing 

methods. 

 

Conclusion 

 

The post-processing method dressing with a dynamically 

compiled run-time error model is a functional tool for 

adjusting ensemble hydrological forecasts which are 

based only on ensemble precipitation forecasts. Methods 

increase the success of hydrological ensemble 

predictions by including uncertainty of hydrological 

modelling. This uncertainty is derived from deviations of 

historical forecasts with a similar pattern of simulated 

discharge and observation. Historical forecasts must 

represent solely possible errors of the hydrological 

forecasting system as a whole without the influence of 

precipitation forecast uncertainty. 

Testing the effect of dressing on the short-term 

ensemble's hydrological forecasting method 

demonstrated a significant improvement in the success of 

the forecast adjustment. Above all, there was a positive 

spreading of the variance of the forecast ensemble and 

also a slight correction of the systematic bias of the flow 

from hydrological model resimulation. The change was 

particularly noticeable in the area of average and below-

average flows, where hydrological modelling is 

the dominant source of uncertainty. For forecasts with 

higher flows and with rising river levels, there wasn’t 

a sufficient number of similar situations in the database 

of historical forecasts and therefore no adjustment by 

the dressing method was possible. However, the most of 

rejected forecasts were runoff episodes where 

the dominant source of uncertainty is the precipitation 

forecast, which is covered in the ensemble's 

meteorological forecast input.  
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The method is suitable for the operational operation of 

hydrological services using automatic or semi-automatic 

forecasting systems. The application of the method into 

a hydrological forecasting system is simple and can be 

implemented without disrupting already established 

processes. 
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