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The availability of remote sensing data opened possibilities for assimilating these into rainfall-runoff models. We 

examined the quality of the simulated monthly runoff regime in catchments in which the inclusion of a new satellite soil 

moisture dataset (ASCAT SW1) into the calibration of the TUW rainfall-runoff model outperformed in the model 

verification the conventional runoff-only calibration in 198 Austrian basins. Using k-means clustering, catchments with 

similar mean monthly runoff regimes were grouped. Three variants of the multi-objective approach were analysed for 

each month of the year in Carinthia, Styria and Upper and Lower Austria regions. Improvement in the simulated monthly 

runoff using the ASCAT data was mainly noticeable in the winter and spring months. The runoff simulation efficiency 

decreased in the driest summer and autumn months. It has also been confirmed that improvements in the simulations can 

be expected in the flat river basins compared to the hilly types and in river basins with lower average slopes. The findings 

refine previous recommendations regarding when hydrological models could benefit from considering information beyond 

the runoff signatures in their calibration. 
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Introduction 

 

Recently the hydrological community significantly 

increased efforts to improve soil moisture estimation by 

incorporating remotely-sensed soil moisture data into 

hydrological studies. The potential of using remotely soil 

moisture through remote sensing in hydrology was 

described, e.g. in Brocca et al. (2017). The areas of 

applications of satellite-based soil moisture data in 

rainfall-runoff modelling cover three areas in general: 

Estimating antecedent soil moisture for rainfall-runoff 

models (e.g., Sunwoo and Choi, 2017; Jadidoleslam et 

al., 2019); assimilation of satellite data for runoff 

forecasting (e.g., Meng et al., 2017; Ciupak et al., 2019; 

Jun et al., 2021, Rončák et al., 2021); multi-objective 

calibration of continuous hydrological models (e.g., Li et 

al., 2018; Tong et al., 2021; Kuban et al., 2021, 2022).  

Multi-objective calibration of rainfall-runoff models 

helps to reduce model and parameter uncertainty and 

improves predictions in general (Efstratiadis and 

Koutsoyiannis, 2010). The advantages of the multi-

objective calibrations using satellite data were 

demonstrated in several case studies (see, e.g., Nijzink et 

al., 2018; Demirel et al., 2019; Széles et al., 2020). In 

addition, microwave satellite sensors increased the 

applicability of remote sensing of soil moisture. 

Consequently, the availability of satellite soil moisture 

datasets is growing, including a new ASCAT Soil Water 

Index (SWI) data product used in this paper (Paulik et al., 

2014). The ASCAT application used here benefits from 

a new vegetation parameterisation of the ASCAT surface 

soil moisture retrieval algorithm and improved spatial 

representation based on a new directional resampling 

method (Tong et al., 2021; Kuban et al., 2021).  

When calibrating rainfall-runoff models to soil moisture 

and discharge data concurrently, improvements in the 

representation of internal soil moisture state variables 

and fluxes were typically achieved. However, joint 

enhancement in soil moisture and runoff simulation 

efficiency has not always been observed (Kuban et al. 

2021, 2022). Furthermore, other studies also noted 

deteriorated performance in runoff simulations (Brocca 

et al., 2017). Therefore, situations leading to benefits 

from including satellite soil moisture data in rainfall-

runoff modelling (both for data assimilation and model 

calibration) need further clarification.   

This paper is based on three various multi-objective 

calibrations of the dual-layer conceptual TUW rainfall-

runoff model in 209 catchments in Austria (Kuban et al., 

2021, 2022). It analyses the quality of the simulated 

monthly runoff regime in those catchments in which the 

inclusion of a new satellite soil moisture dataset (ASCAT 

SW1) into the calibration outperformed the conventional 

runoff-only calibration results in the model verification 
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for 198 catchments. We used identical model calibrations 

as in Kuban et al. (2021), which are based on 

the combinations composed of three multi-objective 

functions: on the runoff and soil moisture in the root 

zone; on the runoff and soil moisture in the topsoil layer; 

and on the runoff and soil moisture both in the root and 

topsoil layers, respectively. These included the exact 

finer spatial resolution of the ASCAT product for 

the topsoil and root zone, reported by Tong et al. (2021).  

Catchments with improvements in the multi-objective 

runoff simulations for each calibration scheme as 

compared to the single objective runoff-only calibration 

are selected and clustered based on the similarity of their 

interannual mean monthly runoff distribution. 

Comparisons of measured and simulated monthly runoff 

regimes are analysed. The results are expected to permit 

inferences about the physiographic properties of 

catchments with typical water balance, where the value 

of the scatterometer data for hydrological modelling 

proves helpful. 

 

Material and methods  

 

The TUW-dual rainfall-runoff model and its 

calibration and validation  

 

In this paper, the TUW-dual conceptual rainfall-runoff 

model's output time series were used as calibrated by 

Kuban et al. (2021) in 209 Austrian catchments. 

The TUW hydrological model follows the structure of 

the well-known HBV model (Bergstrom, 1992). Parajka 

et al. (2009) developed it at the Vienna University of 

Technology as a lumped or semi-distributed conceptual 

rainfall-runoff model. Precipitation, air temperature, and 

potential evapotranspiration inputs are required to model 

catchment runoff on a daily or shorter-step basis. Model 

inputs can be spatially differentiated with the catchment 

elevation. 

Consequently, the meteorological inputs, soil moisture 

and snow water equivalent were independently defined 

for each elevation zone. These were considered to have 

a 200 m altitudinal range in this research. The limitation 

of the approach used here was that the model parameters 

were identical in each elevation zone. Even with this 

limitation, the TUW-dual can still be regarded as a semi-

distributed conceptual model.  

Compared with the original TUW model, in the dual 

version, the soil layer was split into two zones, i.e., 

the shallow surface soil layer (topsoil) and the deep root 

zone soil layer. Separate storage represents each layer. 

The ASCAT data are directly indexed into the surface 

soil layer. The Soil Water Index (SWI) for the root zone 

layer is based on an infiltration model, which relates 

the surface and root zone soil moisture as a function of 

time. Conceptually it represents the soil moisture content 

in the first meter of the soil in relative units, ranging 

between the wilting level (0 %) and field capacity 

(100 %). Paulik et al. (2014) compared the ASCAT SWI 

dataset with at-site soil moisture measurements. They 

found that the SWI better agrees with the in-situ soil 

moisture from the deeper layers than the original ASCAT 

set of soil surface moisture data. 

The surface zone soil storage is fed by rain and snowmelt 

and produces direct runoff. Bidirectional moisture flux 

connects both storages. The field water capacity 

parameter limits the root zone storage capacity, and it 

also produces (slow) runoff. In both soil storages, 

the water is reduced by the actual evapotranspiration, 

which is the function of the actual water level in these. 

Kuban et al. (2021, 2022) contain the detailed algorithm 

and the parametrisation of the layers.  

The original TUW single soil layer model has 15 

parameters, which need to be calibrated. In the TUW-

dual model, 18 parameters had to be considered because 

of the dual soil layer structure. In addition, three new 

parameters for the surface soil storage layer were added. 

The single-objective and multi-objective calibration of 

the TUW-dual model methodology is described in Kuban 

et al. (2021, 2022). The analysis in this paper was based 

on the results achieved therein. For the sake of 

completeness, the main concepts are therefore repeated 

here. 

The multi-objective calibrations were initially performed 

with data from the period 2007–2014 calibration period 

on 209 catchments and were published in Kuban et al. 

(2021). In this study, as in Kuban et al. (2022), we 

analysed the model performance to simulate runoff on 

a subset of 198 basins, where data were available for 

the validation period of 1991–2000. The model 

parameters from the calibration period were used (Kuban 

et al., (2021) in the verification. The validation 

catchments were divided into two groups, as in Kuban et 

al. (2022): catchments where the multi-objective 

calibration approach using the ASCAT SWI data 

improved or did not improve the values of runoff model 

efficiency criterion.  

The multi-objective calibrations by Kuban et al. (2021) 

were performed with four functions (OF). The function 

labelled OFQ was based on runoff only; OFQ+SR was built 

from the runoff and soil moisture in the root zone; OFQ+SS 

was assembled from data on the runoff and soil moisture 

in the topsoil layer, and OFQ+SR+SS was based on 

the runoff and soil moisture both in the root and topsoil 

layers. 

The objective functions in multi-objective calibration 

were a weighted linear combination of the individual 

single-objective functions OFQ, OFSR, and OFSS: 

 
𝑂𝐹𝑄+𝑆𝑅 = 𝑂𝐹𝑄 × 𝑤𝑄 + 𝑂𝐹𝑆𝑅 × 𝑤𝑆𝑅                (1) 

 
𝑂𝐹𝑄+𝑆𝑆 = 𝑂𝐹𝑄 ×  𝑤𝑄 + 𝑂𝐹𝑆𝑆 × 𝑤𝑆𝑆                (2) 

 
𝑂𝐹𝑄+𝑆𝑆+𝑆𝑅 = 𝑂𝐹𝑄 ×  𝑤𝑄 + 𝑂𝐹𝑆𝑆 × 𝑤𝑆𝑆 × 𝑂𝐹𝑆𝑅 × 𝑤𝑆𝑅        (3) 

 
where  

wQ, wSR, wST  – are the weights based on the results of 

Tong et al. (2021) and Kuban et al. 

(2021), and which were set as 1/2 and 1/3, 

respectively.  

 
The Spearman correlation coefficient between 

the measured and simulated soil moisture values was 

used as an objective function for both soil moisture 
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layers. For the runoff, we chose the average of the Nash-

Sutcliffe coefficient (NSE) and the logarithmic NSE as 

the objective functions (Nash and Sutcliffe, 1970): 

 

𝑁𝑆𝐸 = 1 −
𝛴𝑖=1

𝑛 (𝑄𝑜𝑏𝑠(𝑖)−𝑄𝑠𝑖𝑚(𝑖))2

𝛴𝑖=1
𝑛 (𝑄𝑜𝑏𝑠(𝑖)−�̅�𝑜𝑏𝑠)2                                 (4) 

 

𝑙𝑜𝑔𝑁𝑆𝐸 = 1 −
𝛴𝑖=1

𝑛 (𝑙𝑜𝑔𝑄𝑜𝑏𝑠(𝑖)−𝑙𝑜𝑔𝑄𝑠𝑖𝑚(𝑖))2

𝛴𝑖=1
𝑛 (𝑙𝑜𝑔𝑄𝑜𝑏𝑠(𝑖)−𝑙𝑜𝑔�̅�𝑜𝑏𝑠)2                 (5) 

 

where  

Qsim(i), Qobs(i) – are the simulated and observed runoff 

at time i;  

�̅�𝑜𝑏𝑠                   – is the average of the observed runoff. 

 

The efficiency of the validation model runs was 

evaluated with respect to the simulated runoff. Therefore 

the same combinations of NSE and the logarithmic NSE 

were considered as the Runoff Model Efficiency RME: 

 

𝑅𝑀𝐸 = 𝑂𝐹 =
( 𝑁𝑆𝐸+𝑙𝑜𝑔𝑁𝑆𝐸 )

2
                              (6) 

 

The evolution strategy by Storn and Price (1997), also 

known as the differential evolution (DE), was used to 

optimize the multi-objective parameter. DE is considered 

successful in finding the global optimum of a real-valued 

function of real-valued parameters and does not need 

continuous or differentiable objective functions. 

The DEoptim version was used here as described in 

Mullen et al. (2011).  

The improvement in the multi-objective against 

the single-objective calibration was calculated as 

the difference between Relative Volume Errors (RVE): 

 

RVE =∑(
𝑄𝑜𝑏𝑠(𝑖)−𝑄𝑠𝑖𝑚(𝑖)

𝑄𝑜𝑏𝑠(𝑖)
) ∗ 100%   [%]               (7) 

 

Improvement in the multi-objective calibration (IMO) = 

|𝑅𝑉𝐸𝑠𝑖𝑛𝑔𝑙𝑒−𝑜𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒| - |𝑅𝑉𝐸𝑚𝑢𝑙𝑡𝑖−𝑜𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒|   

[%]                        (8) 

 

In this study we decided to cluster the catchments into 

groups with a similar interannual distribution of 

normalised mean monthly runoff. We sought to 

determine how the inclusion of satellite data in such 

groups can improve the model efficiency in a typical 

runoff regime. Runoff simulations using the multi-

objective approaches were considered separately.  

We have applied the cluster analysis to group catchments 

according to the respective normalised runoff regimes 

represented by the interannual distribution of the long-

term means of the monthly discharges divided by the 

long-term mean annual runoff. Cluster analysis is a 

multivariate method that aims to classify a sample of 

subjects (or objects) based on a set of measured variables 

into several different groups so that similar subjects are 

placed in the same group. The cluster analysis method 

has several variants; in this study, the k-means clustering 

was used (e.g., Hartigan, 1975). 

This standard algorithm, which defines the total within-

cluster variation as the sum of squared Euclidean 

distances between items and the corresponding centroid, 

has the following formula: 

 

𝑊(𝐶𝑘) = ∑ (𝑥𝑖 − 𝜇𝑘)𝑥𝑖∈𝐶𝑘
2
                             (9) 

 

where  

xi    – is a data point belonging to the cluster Ck,  

μk  – is the mean value of the points assigned to 

the cluster Ck. 

 

The choice of distance measures is a critical step in 

clustering. It defines how the similarity of two elements 

(x, y) is calculated and it will influence the shape of 

the clusters. The classical method for distance measure is 

the Euclidean distance calculated as: 

 

𝑑euc(𝑥, 𝑦) = √∑ (𝑥𝑖 − 𝑦𝑖)2𝑛
𝑖=1                            (10) 

 

where,  

x and y  – are two vectors of length n. 

 

The K-means algorithm iteratively assigns each 

observation to the nearest centre and re-iterates this 

process until a new iteration no longer re-assigns any 

observations to a new cluster. The algorithm is 

considered to have converged at this point, and the final 

cluster assignments constitute the clustering solution. 

More details about this method are presented, e.g., in 

Hartigan and Wong (1979). 

 

Data  

 

In this paper, 198 catchments from the whole country of 

Austria were selected (Fig. 1). These catchments were 

also used in the previous studies (Kuban et al., 2022, 

2021; Tong et al., 2021; Sleziak et al., 2020), and 

represent river basins with no significant anthropogenic 

influences. The catchments have various 

geomorphological characteristics. The catchments’ area 

varies between 13.7 (Micheldorf, Krems River) to 

6214 km2 (Bruck an der Mur under Muerz, the Mur 

River), and the average slope varies from 1.74% to 

43.91%. The mean annual precipitation is less than 

400 mm year-1 in the east and more than 2500 mm year-1 

in the west of Austrian. The mean daily air temperature 

was −2.83°C in the Alpine catchments and up to 10.30°C 

in the lowland catchments. 

The Austrian hydrological and meteorological data that 

we used in this study were provided by the Central 

Hydrographical Bureau (HZB; https://ehyd.gv.at/, last 

access: 17 March 2021) and the Zentralanstalt für 

Meteorologie und Geodynamik (ZAMG). The data from 

all 198 gauged stations from the period 1991–2000 were 

used to validate the model in a daily time step. 

The discharge time series were not influenced by dams 

or hydropower structures. The climatic model inputs 

(mean daily precipitation and mean daily air temperature) 

have been derived from the gridded SPARTACUS data 

set (Hiebl and Frei, 2016, 2017). This data set provides 

daily 1 km gridded spatial resolution maps covering 

the whole territory of Austria. These data have been 

https://ehyd.gv.at/
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available since 1961 and have been consistently 

interpolated using the same consistent station network 

throughout the entire period (Duethmann et al., 2020). 

For the multi-objective calibration, the new experimental 

data of the Soil Water Index (ASCAT SWI) were used 

from the experimental version of the ASCAT DIREX 

Soil Water Index (ASCAT SWI) product, similarly as in 

Tong et al. (2021). The original ASCAT SWI surface soil 

moisture dataset at a 12.5 km spatial resolution is based 

on a new parametrisation for the correction of vegetation 

(Hahn et al., 2020), which has shown better soil moisture 

results for Austria (Pfeil et al., 2018). The process of 

disaggregation consists of a directional resampling 

method using a connection between regional (12.5 km) 

and local (0.5 km) scale Sentinel-1 backscatter 

observations, which temporarily retain stable soil 

moisture patterns that are also reflected in the radar 

backscatter measurements (EODC, 2021). The ASCAT 

SWI product provides estimates of the Soil Water Index 

describing the soil-water content profile on a 0.5 km 

spatial sampling grid, whereas the effective spatial 

resolution is believed to be within the range of 5–15 km, 

depending on the location. It is derived from directionally 

downscaled ASCAT surface soil moisture by computing 

the Soil Water Index. A key strength of this product is its 

consistency over long periods of time, as its temporal 

behaviour is only determined by the backscatter 

measurements acquired by the intercalibrated ASCAT 

sensors flown onboard the Metop-A/B/C, which belongs 

to the EUMETSAT-operated Metop ASCAT (Advanced 

Scatterometer) satellite mission. 

 

Results and discussion 

 

We apply the K-means clustering methods to cluster 

the catchments analysed with similar mean monthly 

runoffs for all three multi-objective variants of the runoff 

simulation. Only catchments with an improvement in 

the runoff simulation for the individual approaches of 

the model multi-objective calibration were considered. 

Four clusters were formed for all three multi-objective 

approaches  tested. Fig. 2 presents  the spatial division of 

 

 

 
 

Fig. 1.  Location of the 198 catchments selected on the territory of Austria.  

 

 

 
 

Fig. 2.  Groups of the catchments with similar runoff regimes, with an improvement in 

the runoff simulation for the three multi-objective approaches (Q+SS, Q+SR, and 

Q+SS+SR) in the 1991–2000 validation period. 
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Fig. 3.  Normalized mean monthly runoff for the catchments where we have detected 

an improvement in the runoff simulation with the multi-objective approach (Q+SS) for 

1991–2000. 

 

 

 
 

Fig. 4.  Normalized mean monthly runoff for the catchments where we have detected 

an improvement in the runoff simulation with the multi-objective approach (Q+SR) for 

1991–2000. 
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Fig. 5.  Normalized mean monthly runoff for the catchments where we have detected 

an improvement in the runoff simulation with the multi-objective approach (Q+SS+SR) 

for 1991–2000. 

 

 

 

the catchments into four clusters. We can see that the 

catchments form very comparable clusters, which are 

located in the following federal republics (regions) of 

Austria: Tirol and Salzburg (marked by purple colour 

points), Upper and Lower Austria (green and blue colour 

points), and Styria, Carinthia, and Burgenland (orange 

colour points).  

Figs. 3–5 presents the typical mean monthly runoff 

regimes for the catchments analysed. We can see that 

the catchments located in the regions of Tyrol and 

Salzburg are characterised by the highest amount of 

runoff from May to July and by the driest periods in the 

winter months. This regime is typical of the high 

mountainous regions in the Alps. The catchments in the 

Upper and Lower Austria regions were divided by 

clustering into two groups, which represent hilly and flat 

catchments. The differences in these catchments can also 

be seen in the specific runoff and geomorphological 

characteristics. The runoff regime from snowmelt in the 

spring season is earlier in the flat catchments than the 

hilly ones. The catchments located in the regions of 

Carinthia and Styria are specific, with a higher monthly 

runoff regime in the spring and autumn that has an 

interconnection with the precipitation regime influenced 

by the cyclonic tracks from the Mediterranean Sea. 

The comparison of the improvement in the runoff 

simulation using the multi-objective against the single-

calibration approach was evaluated for the individual 

months using box plots, see Figs. 6–8. The box plots 

show the percentage of the improvement or deterioration 

in relative volume errors for the three multi-objective 

approaches (Q+SS, Q+SR, and Q+SS+SR) against 

the single-calibration approach for a specific month in 

the period 1991–2000 (Equations 7, 8).  

The evaluation showed that the improvements occurred 

in different months for each group of catchments, where 

we detected an improvement in the runoff simulation 

with the multi-objective approach. For the Tyrol and 

Salzburg regions, there was a significant improvement in 

the runoff simulation between September and December 

and only a slight improvement from January to April. In 

the Upper and Lower Austria regions for the hilly river 

basins, there was only a slight improvement in the spring 

months of March-May for the multi-objective 

(Q+SS+SR) simulation and June. For the flat river basins 

in Upper and Lower Austria, there was a significant 

improvement in the runoff simulation from October to 

March, a slight decrease in May, and a subsequent 

improvement in June. In the states of Carinthia 

and   Styria,  there  was  an  improvement  in  the  runoff  
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Fig. 6.  Improvement in relative volume errors in [%] for multi-objective (Q+SS) 

calibration vs single-objective calibration in individual months for 1991–2000. 

 

 
Fig. 7.  Improvement in relative volume error in [%] for multi-objective (Q+SR) 

calibration vs single-objective calibration in individual months for 1991–2000. 
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Fig. 8.  Improvement in relative volume errors in [%]) for multi-objective (Q+SS+SR) 

calibration vs single-objective calibration in individual months for 1991–2000. 

 

 

 

 

simulation using the multi-objective (Q+SS) approach 

from January to April and then in October to November, 

and for the multi-objective (Q+SR) approach from 

February to April. For the multi-objective (Q+SS+SR) 

approach, this improvement occurred in February-June 

and November. 

 

Conclusion 

 

In this study, we have examined the improvement of the 

simulated monthly runoff regime in catchments in which 

the inclusion of a new satellite soil moisture dataset 

(ASCAT SW1) into the calibration of the TUW rainfall-

runoff model outperformed in the model verification, 

the conventional runoff-only calibration in 198 Austrian 

basins. Using k-means clustering, catchments with 

similar mean monthly runoff regimes were grouped for 

regions: Carinthia, Styria, and Upper and Lower Austria. 

Three variants of the multi-objective approach were 

tested for each month of the year. From the results, we 

can conclude that any improvement in the simulated 

runoff using ASCAT SWI data is mainly noticeable in 

the winter and spring months and vice versa; decreases in 

the simulation efficiency occurred in the driest summer 

and autumn months. This may be related to the ASCAT 

SWI product providing moderately distorted data for 

very dry soil (EODC, 2021). It has also been confirmed, 

e.g., in the Upper and Lower Austria regions, that better 

improvement in the simulations can be expected in 

the flat river basins compared to the hilly types, as well 

as in river basins with a lower average slope. 
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