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Abstract: In this study, analytical models for predicting groundwater contamination in isotropic and homogeneous  
porous formations are derived. The impact of dispersion and diffusion coefficients is included in the solution of the ad-
vection-dispersion equation (ADE), subjected to transient (time-dependent) boundary conditions at the origin. A retarda-
tion factor and zero-order production terms are included in the ADE. Analytical solutions are obtained using the Laplace 
Integral Transform Technique (LITT) and the concept of linear isotherm. For illustration, analytical solutions for linearly 
space- and time-dependent hydrodynamic dispersion coefficients along with molecular diffusion coefficients are present-
ed. Analytical solutions are explored for the Peclet number. Numerical solutions are obtained by explicit finite difference 
methods and are compared with analytical solutions. Numerical results are analysed for different types of geological po-
rous formations i.e., aquifer and aquitard. The accuracy of results is evaluated by the root mean square error (RMSE). 
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INTRODUCTION 

 
Analytical solutions of the advection-dispersion solute 

transport equation remain useful for a large number of applica-
tions in water science and engineering, hydrological science 
and engineering, environmental science and engineering etc. 
They are also useful to benchmark the numerical codes and 
solution and as a preliminary predictive tool in groundwater 
resource management. The bulk transport of solutes is dominat-
ed by advection and dispersion with which diffusion is usually 
lumped. Longitudinal dispersion causes contaminant plumes to 
spread out in the direction of flow. The spreading is due to the 
heterogeneity of the medium, such as a distribution of pore 
sizes and shapes. Dispersion which is perpendicular to the 
aquifer flow direction is called transverse dispersion. It is relat-
ed to diffusion and plays an important role in the remediation of 
contaminants. It helps dilute the concentration of contaminants 
and mix them with reactive compounds. The combination of 
hydrodynamic dispersion and molecular diffusion coefficients 
is considered to describe the solute transport (Batu, 2006; 
Sharma and Reddy, 2004). 

The dominant process of solute transport is advection mov-
ing aqueous chemical species along with fluid flow. Most of the 
solute transport modeling begins with advective transport. The 
advection-dispersion equation describes the spatial and tem-
poral variation in solute concentration with specific initial and 
boundary conditions. The governing equation known as the 
constant-parameter advection-dispersion equation may be de-
rived for the case of steady and unsteady flows. The traditional 
advection-dispersion equation represents a standard model to 
predict the solute concentration in an aquifer which is based on 
conservation of mass and Fick’s law of diffusion (Bear, 1972; 
Fried and Combarnous, 1971). 

Scheidegger (1957) explored the dispersion theory based on 
a relationship between two parameters (i.e., dispersion coeffi-
cient and seepage velocity) and proposed two possible relation-
ships that (i) the dispersion coefficient is proportional to seep-
age velocity and (ii) the dispersion coefficient is proportional to 
the square of seepage velocity. A general theory of dispersion 
in porous media was explored by Scheidegger (1961). Later, 

the dispersion theory was generalized as dispersion coefficients 
proportional to the power of seepage velocity where power 
ranges from 1 to 2 (Freeze and Cherry, 1979). It has also been 
experimentally observed that the dispersion coefficient is di-
rectly proportional to the seepage velocity with a power ranging 
from 1 to 1.2 (Ghosh and Sharma, 2006). 

Ebach and White (1958) described the time-dependent input 
concentration for longitudinal dispersion flow. Barry and Sposi-
to (1989) obtained a closed form solution to solute transport in 
a semi-infinite domain with an arbitrarily time-dependent dis-
persion coefficient and arbitrary initial and boundary flux con-
ditions by variable transformation. They also computed a  
numerical solution using a simple scheme and compared it with 
the analytical solution. The numerical scheme was unstable for 
large values of tΔ . Ogata and Banks (1961) presented a solu-
tion to a one-dimensional advection-dispersion equation in a 
homogeneous medium in which the impact of diffusion was not 
included. Gelhar et al. (1992) proposed that the dispersivity is 
often found to be scale-dependent. Huang et al. (1996) em-
ployed general analytical solutions for one-dimensional solute 
transport in heterogeneous porous media with linearly increas-
ing dispersivity. Aral and Liao (1996) studied the time-
dependent dispersion coefficient for contaminant transport. 
Basha and El-Habel (1993) presented analytical solutions with 
one-dimensional linear, asymptotic and exponential time-
dependent dispersivities in infinite domains. Huang et al. 
(2006) employed a parabolic distance-dependent dispersivity in 
a finite column. Guerrero and Skaggs (2010) analysed the ana-
lytical solution for the advection-dispersion equation with the 
distance-dependent coefficient using the generalised integral 
transform technique (GITT). Chen et al. (2012) presented a 
novel method for solving analytically multi-species advective-
dispersive transport equations sequentially coupled with first-
order decay reactions. Singh et al. (2012) proposed  
one-dimensional analytical solution with temporally dependent 
dispersion in a homogeneous semi-infinite porous formation. 
Guerrero et al. (2013) analysed the diffusion type problems 
with transient boundary conditions with Duhamel theorem. You 
and Zhan (2013) studied the semi-analytical solution for solute 
transport in a finite column with linear asymptotic or exponen-
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tial distance-dependent dispersivities and time-dependent 
sources. Zamani and Bombardelli (2014) explored analytical 
solutions to the ADR (advection-dispersion-reaction) equation 
from which one can know the spatio-temporal changes in flow 
field and dispersivity. Van Genuchten et al. (2013) presented a 
series of one- and multi-dimensional solutions of the standard 
equilibrium advection-dispersion equation with and without 
terms accounting for zero-order production and first-order 
decay, which proved useful for simplified analyses of contami-
nant transport in surface water, and for mathematical verifica-
tion of more comprehensive numerical transport models where 
the isotherm concept was not used. 

In this study, we derived two novel analytical solutions for 
advection-dispersion equations with the impact of space- and 
time-dependent dispersion with diffusion. Both equations were 
solved analytically, subjected to linear adsorption coefficient in 
the solid and liquid phases. First, they were solved with respect 
to the space-dependent dispersion in longitudinal direction of 
flow with diffusion. The asymptotic dispersivity was consid-
ered which increased steadily with respect to space from the 
input source. The domain was initially not solute free i.e., the 
geological formation was not clean which means some initial 
background concentration existed. It was represented by a 
linear expression of the initial source with zero order produc-
tion term which affected the solute concentration. One end of 
the domain, the time-dependent decreasing source was injected 
along with the uniform concentration of the initial source. The 
solute mass ejected from the other end of the domain so the flux 
was supposed to be zero. The concept of dispersion directly 
proportional to the seepage velocity, was employed (Freeze and 
Cherry, 1979). The Peclet number was used in the characteristic 
form with the space-dependent dispersivity which also affected 
the domain. A new time variable was used to define the old 
time in the longitudinal direction. A new transformation was 
used to reduce the advection term. 

Second, we considered the time-dependent dispersion with 
diffusion. Here, we used the concept of dispersion as directly 
proportional to the ratio of the initial seepage velocity with the 
corresponding mean travel time. The dispersivity was defined 
for the positive time interval with respect to diffusion, i.e., the 
reactive solute was activated from the origin of source in the 
domain and travel along the longitudinal direction of flow.  

The objective of this work was to derive an analytical solu-
tion with the help of Laplace Integral Transform Technique 
(LITT) for predicting contaminant concentration with distance 
and time. Numerical simulation for three different types of 
velocity expressions (i.e., exponentially decreasing, sinusoidal-
ly varying, algebraic sigmoid) with the corresponding mean 
travel time was done. The analytical solutions were analysed 
for the aquifer and aquitard formations. In general, the trans-
mission capacity is low in aquitard as compared to the aquifer. 
So, the rate of solute concentration was high in the aquitard as 
compared to the aquifer. The mean travel time and Peclet num-
ber were also compared. 

 
MATHEMATICAL FORMULATION OF THE 
PROBLEM 

 
Considering a system in which non-reactive solute transport 

is primarily one-dimensional, i.e., solute concentrations are 
horizontally and vertically well-mixed so that concentrations 
vary only in the longitudinal or downstream direction. The 
effects of dispersion are constant or the time-dependent with 
respect to distance; and the solutes are conservative in the un-
steady field. Given these assumptions, the conservation of mass 

yields the constant parameter advection-dispersion equation 
(ADE) as 

 

1c n F c
D uc c

t n t x x
μ∂ − ∂ ∂ ∂ + = − − ∂ ∂ ∂ ∂ 

 (1) 

 
where c [ML–3] is the volume averaged dispersing solute con-
centration in the liquid phase, F [ML–3]is the volume averaged 
dispersing solute concentration in the solid phase, D [L2T–1]is 
the longitudinal dispersion coefficient (i.e. representing longi-
tudinal dispersion), u [LT–1]is the unsteady uniform downward 
pore seepage velocity, x [L] is the length in longitudinal direc-
tion of flow , t [T] is time, μ  [T–1] is the first order decay rate 
coefficient for solute production in the liquid phase, and n is 
the porosity of the different geological formations. 

A linear adsorption coefficient in terms of the solid and liq-
uid phases is considered as 

 

dF K c=  (2) 
 

where dK is the distribution coefficient. 

Using equation (2) in equation (1), we have 
 

c c
R D uc c

t x x
μ∂ ∂ ∂ = − − ∂ ∂ ∂ 

 (3) 

 

where 
1

1 d
n

R K
n

−= +  (4) 

 
is the retardation factor. 

The retardation commonly describes a reversible sorption 
process, including adsorption and ion exchange. Sorption is 
experimentally defined by the measured quantity of a solute 
that can be sorbed by a particular sediment, soil or rock. 

Initially the aquifer is assumed to be contaminated (i.e., 
some initial background concentration exists in the aquifer) and 
it is represented by a linear combination of some kind of initial 
concentration and the zero order production term with seepage 
velocity. The mathematical expression for the assumption can 
be written as 

 

( ),0 i
x

c x c
u

γ= + ,  0, 0x t> =   (5) 

 
where ci [ML–3] is the initial background concentration, and  
γ [ML–3T–1] is the zero order production rate coefficient for 
solute production in the liquid phase. 

Solute transport is also affected by the boundary condition 
chosen as input time-dependent source concentration with 
initial background concentration at the origin i.e., at 0x = . To 
solve ADE given in equation (1), an inlet boundary condition is 
prescribed as 

 

( ) ( )00, expic t c c tλ= + −     0, 0t x> =   (6) 

 
where λ  [T–1] is the decay rate constant. 

At the other end of the aquifer, solute transport may not be 
affected and therefore, an outlet boundary condition is pre-
scribed as a no flux boundary condition, i.e. 

 

0
c

x

∂ =
∂

, x →∞    (7) 
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Analytical solution for space-dependent dispersion with 
diffusion  

 
Let ( )0u u f mt= , ( )0D D f mt= , ( )0 f mtμ μ=  and

( )0 f mtγ γ=  where ( )f mt  is non-dimensional, and  m [T–1] is 

the flow resistance coefficient. Here 0D  [L2T–1] is the initial 

longitudinal dispersion coefficient, 0u  [LT–1] is the initial 

seepage velocity, 0μ  [T–1] is the initial first order decay term, 

and 0γ [ML–3T–1] is the initial zero-order production term. 

Equation (3) can be written as 
 

( ) 0 0 0
R c c

D u c c
f mt t x x

μ∂ ∂ ∂ = − − ∂ ∂ ∂ 
 (8) 

 
Further we introduce a new time variable (Crank, 1975) 
 

( )*

0

t

T f mt dt=   (9) 

 
Using equation (9) in equation (8) we obtain 

 

0 0 0*

c c
R D u c c

x xT
μ∂ ∂ ∂ = − − ∂ ∂∂  

  (10) 

 
The dispersion coefficient is expressed as a combination of 

hydrodynamic dispersion and diffusion as 
 

*
0 0D qxu D= +  (11) 

 

 
where q  is the non-dimensional constant parameter growing 

rate of dispersivity w. r. t. distance, and *D [L2T–1] is the mo-
lecular diffusion coefficient. In most of the previous works, the 
impact of diffusion is not considered because it does not vary 
significantly for different soil and contaminant combinations 
and ranges from 1×10–9 to 2×10–9m2/sec (Mitchell, 1976).  
Later, it was found that even a small value for the diffusion 
coefficient may also have significant impact on solute transport 
in porous media, especially for fine-grained geologic materials 
(Gillham and Cherry, 1982). 

 
 
 

Now applying equation (11) in equation (10) we have 
 

( ) ( )
2

*
0 0 0* 2

1
c c c

R qxu D u q c
xT x

μ∂ ∂ ∂= + − − −
∂∂ ∂

 (12) 

 
Applying the following non-dimensional parameters  
 

* 2
0 0 0 0 0 0

1 12 2
0 0 0 0 0 0

, , , ,
c xu T u D D

C X T
c D D u c u

μ γμ γ= = = = =  (13) 

 
in equation (12), one can get as 

 
2

1 1 12

C C C
R D A C

T XX
μ∂ ∂ ∂= − −

∂ ∂∂
 (14) 

 
*

0 0
1 1

0 0

1
, 1

u D
D A

D D Pe

α= + = − , and 
0

x
Pe

α
= , 0 qxα =  (15) 

 

where 0α  is asymptotic dispersivity. 

Now the initial and boundary conditions are expressed in 
terms of non-dimensional parameters as 

 

( ) 1
0

,0 ,ic
C X X

c
γ= +       0, 0X T> =  (16) 

( ) *

0

0, 1ic
C T T

c
λ= + − ,  0, 0X T= > , where * 0

2
0

D

u

λλ =  (17) 

0
C

X

∂ =
∂

,      , 0X T→ ∞ ≥  (18) 

 
We used the transformation 

 

( ) ( )
2

1 1
1

1 1

1
, , exp

2 4

A A
C X T K X T T

D R D
μ

  
= − +      

, (19) 

 
to eliminate the convective terms form of equation (14) where 

( ),K X T  is another dependent variable. 

Using equation (19) for reducing the advective term from 
equation (14) and analytical solution obtained subject to initial 
and boundary conditions given in equations (16) – (18) by 
applying the Laplace transform technique, the solution can be 
written as 

 

( )
( ) ( ) ( )

( )
2

1 1

1 1

*

20 0
1 1

1
1 12 41 1 1 1

1
0

1 , , ,

1
, exp

2 4
,

i i

A A
X T

D D Ri

c c
F X T G X T H X T

c c
A A

C X T T
D R D

A c A
I X T X T e

R c R

λ

μ
γ γγ

 
− −  
 

  
+ − −  

     
= − +            + + + − 
   

 (20) 

 

where ( )
1 1 1 1

1 1 1
, exp exp

2 2 2

R R R R
F X T T X erfc X T T X erfc X T

D D T D D T

β ββ β β β
        

= − − + + +                        
 (21a) 

 

( )
1 1 1

1 1 1

1 1
, 2 exp

24

1 1
2 exp

24

R R R
G X T T X T X erfc X T

D D D T

R R R
T X T X erfc X T

D D D T

ββ β β
β

ββ β β
β

     
= − − −              

     
+ + + +              

 (21b) 
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( )
2 2

1 1 1 1 1 1

1 1 1 1 1 1 1 1

1 1 1
, exp exp

2 4 2 2 2 4 2 2 2

A A R A T A A R A T
H X T T X erfc X T X erfc X

D R D D T D R D R D D T D R

       
= − − + + +                     

 (21c) 

 

( )
2

1 1 1 1 1

1 1 1 1 1 11

2
1 1 1 1 1

1 1 1 1 1 11

1
, exp

2 4 2 2 2

1
exp

2 4 2 2 2

D AT R A A R A T
I X T X T X erfc X

A D D R D D T D RD R

D AT R A A R A T
X T X erfc X

A D D R D D T D RD R

     
= − − −            

     
+ + + +            

 (21d) 

 

and 
2

1
1

1

1

4

A

R D
β μ

 
= +  

 
 (21e) 

 
Analytical solution for time-dependent dispersion with 
diffusion 
 

In this case, we use the concept of dispersion which is di-
rectly proportional to the initial seepage velocity and inversely 
proportional to the mean travel time of the solute transported 

through the aquifer. Let 
( )

0
1

f mt
u u

K
= , 

( )
0

1

f mt
D D

K
= , 

( )*
0

1

f mt

K

μ
μ =  and 

( )
0

*

1

f mt

K

γ
γ =  where 1K  is the mean travel 

time *
0μ  [T–1]is the initial first order decay rate coefficient for 

solute production in the liquid phase, and 
0

*γ  [ML–3T–1] is the 

initial zero-order production term. 
Now equation (3) can be written as  
 

( )
*1

0 0 0
K c c

R D u c c
f mt t x x

μ∂ ∂ ∂ = − − ∂ ∂ ∂ 
 (22) 

 
Further, using the new time-dependent variable  

 

( )*

1

t

o

f mt
dt

K
τ =   (23) 

 
in the above equation (22), we get as follows: 

 

*
0 0 0*

c c
R D u c c

x x
μ

τ
∂ ∂ ∂ = − − ∂ ∂∂  

 (24) 

 

where 0D is the dispersion coefficients defined in terms of the 

linear time-dependent expression  
 

( ) *
0

1

f mt
D Q D

K
= +  (25) 

 

where Q is the maximum dispersivity, 1K  is the mean travel 

time, *D is the molecular diffusion coefficients, and ( )f mt is 

the generalised case of the time-dependent function which 
describes the diffusivity in the whole domain. 

Since the mean travel distance for the dispersivity is directly 
proportional to the mean travel time in the longitudinal flow 
with a constant velocity field, the two formulations for the 
diffusivity are considered in the equilibrium and non-
equilibrium forms. 

The value of maximum dispersivity Q for the time-
dependent diffusion in the semi-infinite domain is considered as 
follows: 

 

( )
1 ; 0

0 ; 0

K
t

f mtQ

t

 ∀ > =  
 ∀ < 

 (26)  

 
Using equation (25) in the equation (24), we have 
 

( ) 2
* *

0 0* 2
1

f mtc c c
R Q D u c

K xx
μ

τ
 ∂ ∂ ∂= + − −  ∂∂ ∂ 

 (27) 

 
For the positive value of time the equation (27) reduces to 
 

2
* *

0 0* 2
1

c c c
R D u c

xx
μ

τ
∂ ∂ ∂ = + − −  ∂∂ ∂

 

i.e., 
2

* *
1 0 0* 2

c c c
R D u c

xx
μ

τ
∂ ∂ ∂= − −

∂∂ ∂
 (28) 

 
Again using the non-dimensional variable we have 
 

* 2 * *
0 0 0 0 0 0

2 22 2
0 0 0 0 0 0

, , , ,
c xu u D D

C X
c D D u c u

τ μ γτ μ γ= = = = =  (29) 

 
Equation (28) reduces to  
 

2

11 22

C C C
R D C

XX
μ

τ
∂ ∂ ∂= − −
∂ ∂∂

 , where 
*
1

11
0

D
D

D
=  (30) 

 
The corresponding initial and boundary conditions in terms 

of the non-dimensional variable, can be written as 
 

( ) 2
0

,0 ,ic
C X X

c
γ= +  0, 0X τ> =  (31)  

 

( ) *

0

0, 1ic
C

c
τ λ τ= + − , 0, 0X τ= > , where * 0

2
0

D

u

λλ =  (32) 

 

0
C

X

∂ =
∂

,      , 0X τ→ ∞ ≥  (33) 

 
Further using the following transformation 
 

( ) ( ) 2
11 11

1 1 1
, , exp

2 4
C X K X X

D R D
τ τ μ τ

  
= − +  

   
 (34) 

 
from the above equations (30) – (33) and by applying the same 
procedure as discussed earlier, we get the solution as 
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( )
( ) ( ) ( )

( ) 11 11

*
1 1 1

0 0

21 1
11 112 42 2

1 2
0

1 , , ,
1 1 1

, exp
2 4

,

i i

X
D D Ri

c c
F X G X H X

c c
C X X

D R Dc
I X X T e

R c R

τ

τ λ τ τ

τ μ τ
γ γτ γ

 
− − 
 

  
+ − −  

     = − +   
     + + + −    

    (35) 

 

where ( )1
11 11 11 11

1 1 1
, exp exp

2 2 2

R R R R
F X X erfc X X erfc X

D D D D

ξ ξτ ξτ ξτ ξτ ξτ
τ τ

        
= − − + + +                        

 (36a) 

 

( )1
11 11 11

11 11 11

1 1
, 2 exp

24

1 1
2 exp

24

R R R
G X X X erfc X

D D D

R R R
X X erfc X

D D D

ξτ ξτ ξτ ξτ
τξ

ξξτ ξτ ξτ
τξ

     
= − − −              

     
+ + + +              

 (36b) 

 

( ) 11 11 11 11
1

11 11 11 11

1 1 1 1
exp

4 2 2 21
,

2 1 1 1 1
exp

4 2 2 2

R
X erfc X

D R D D D R
H X

R
X erfc X

D R D D D R

ττ
τ

τ
ττ

τ

   
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   + + +        

                      (36c) 
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τ ττ τ
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τ ττ
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    
= − − −            

    
+ + + +            

 (36d) 

 

and 2
11

1 1

4R D
ξ μ

 
= + 

 
 (36e) 

 
NUMERICAL SOLUTION  
 

Numerical dispersion was first quantified by Lantz (1971). 
The second-order error was investigated through the truncated 
Taylor series approximation by using the explicit finite differ-
ence method to solve one-dimensional advection dispersion 
equation (Chaudhari, 1971). Numerical studies explored the 
effect of numerical dispersion (De Smedt and Wierenga, 1977; 
Dudley et al., 1991; van Genuchten and Gray, 1978). The root 
mean square was used to calculate the average error at each 
nodal point of the grid (Roberts and Selim, 1984). Moldrup et 
al. (1994) presented an explicit finite-difference model based 
on an unsteady one-dimensional solute transport equation. In 
general, the solution of the transport equation can be obtained 
by numerical integration. The objective of this study is to vali-
date the analytical solution with a numerical solution for solute 
transport in a homogeneous porous medium with space- and 
time-dependent dispersion and diffusion. 
 
Numerical solution for space-dependent dispersion and 
diffusion 
 

In order to solve the advective-dispersive equation by an ex-
plicit finite difference method, the semi-infinite medium is 
changed into a finite medium by using the following transfor-
mation: 
 

( )' 1 expX X= − −  (37) 
 

 

Using equation (37) in equation (14) we have 
 

( ) ( )
22' '

1 2 1'2 '
1 1

C C C
R D X D X C

T X X
μ∂ ∂ ∂= − − − −

∂ ∂ ∂
,  (38) 

 

where 2 1 1D D A= + .  

Initial and boundary conditions are transformed as follows: 
 

( )'
1 '

0

1
,0 log

1
ic

C X
c X

γ  = +  − 
; ' 0, 0X T> =  (39) 

( ) *

0

0, 1ic
C T T

c
λ= + − ; ' 0, 0X T= >  (40a) 

 

'
0

C

X

∂ =
∂

; ' 1, 0X T= >  (40b) 

 

The one-dimensional solute transport equation represents a 
partial differential equation of parabolic type in which, finite 
difference technique is commonly used to obtain numerical 
solution. An explicit finite difference technique is commonly 
used, even though it requires extended computing time because 
of its restrictive stability criteria. The finite difference tech-
nique is derived by using Taylor’s expansion (Carnahan et al., 
1969; Mickley et al., 1957) in which partial derivatives are 
approximated and hence, solutions can be obtained by using the 
first, second or higher order accurate methods. Here, we have 
used the general form of an explicit finite difference approxi-
mation with forward time and central space forward difference 
scheme in equation (38) together with initial and boundary 
conditions given in equations (39), 40(a) to 40(b) which are 
approximated, respectively, as follows: 
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( ) ( )

( )( ) ( )

2'1 1
, 1 , 1, , 1, '2

'2
1, 1, '

1 1
2

4

1 1 2i j i j i i j i j i j

i i j i j

D T
C T C X C C C

R R X
D T

X C C
R X

μ
+ + −

+ −

Δ = − Δ + − − +  Δ 
Δ− − −
Δ

 

,0 1 '
0

1
log

1
i

i
i

c
C

c X
γ

 
= +   − 

;      0i >  (42) 

*
0,

0

1i
j j

c
C T

c
λ= + − ;               0j >  (43a) 

, 1,M j M jC C −=                        0j >  (43b) 

 
where i  is the longitudinal space subscript, j  gives different 

time levels for which  the solutions  are  approximated, 'XΔ  is 
the increment in the longitudinal  direction, and TΔ  is the time 
increment in equation (41). 

The space domain 'X and time domain T  are discretized by 

a rectangular grid of point ( ),i jX T′  with mesh-size 

 and X T′Δ Δ , respectively: 
' ' ' ' '

1 0, 1,2,..., , 0, 0.01i iX X X i M X X−= + Δ = = Δ =   

1 0, 1,2,..., , 0, 0.0001j jT T T I T T−= + Δ = = Δ = j   

The contaminant concentration at a point for space '
iX  with 

j th subinterval of time T  is defined by ,i jC . 

 
Stability analysis  

 
A finite difference method is convergent if the discretization 

error approaches zero, as the mesh sizes in time and spatial 

domain i.e., TΔ  and 'XΔ , respectively, tend toward zero 
(Carnahan et al.,1969). Here, we used the forward difference in 
time for the first order derivative with respect to time which 
contains the first order accuracy. The stability condition of the 
finite difference scheme is determined using the matrix method 
proposed by Smith (1978) and this technique was used by  
Notodarmojo et al. (1991). The finite difference scheme of the 
governing partial differential equation can be rewritten as fol-
lows: 
 

( ) ( ) ( ), 1 1, , 1,2i j i j i j i jC C C Cβ ξ α β β ξ+ − += + + − + −  (44) 

 

where 11 T
R

μα = − Δ , 1
'2

D T

R X
β Δ=

Δ
 and 2

'2

D T

R X
ξ Δ=

Δ
 

In the matrix form, it can be written as follows: 
 

[ ] [ ]1j j
C A C

+ =  (45) 

 
where matrix A  contains all the constants. 

The difference equation is stable, if the eigenvalues of A  
must have modulus values less than or equal to unity, i.e., 

1a ≤ , where a is the eigenvalue of the matrix A . 

On applying the Gerschgorin circle method to determine the 
bounds of eigenvalues of the matrix A , the stability criterion 
for the time step is obtained as follows: 

 
 

2
1 1

'

1

2

2

T
D

R R X

μ
Δ ≤

 
+ 

Δ 

 (46) 

Numerical solution for time-dependent dispersion with 
diffusion  

 
Applying the transformation defined in equation (37), the 

time-dependent diffusion equation (30) expressed in finite 
domain is written as follows: 
 

( ) ( )
22' '

11 12 2'2 '
1 1

C C C
R D X D X C

X X
μ

τ
∂ ∂ ∂= − − − −
∂ ∂ ∂

 (47) 

 

where 12 111D D= + .     

The corresponding initial and boundary conditions are writ-
ten as follows: 
 

( )'
2 '

0

1
,0 log

1
ic

C X
c X

γ  = +  − 
;    ' 0, 0X τ> =  (48) 

( ) *

0

0, 1ic
C

c
τ λ τ= + − ;   ' 0, 0X τ= >  (49a) 

'
0

C

X

∂ =
∂

; ' 1, 0X τ= >  (49b) 

 
Similarly, we have used the general form of the explicit fi-

nite difference approximation with forward time and central 
space forward difference scheme applied in equation (47) to-
gether with the initial and boundary conditions given in equa-
tions (48), 49(a) to 49(b) which are approximated, respectively, 
as follows: 
 

( ) ( )

( ) ( ) ( )
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      0i >  (51) 

 

*
0,

0

1i
j j

c
C

c
λ τ= + −                 0j >  (52a) 

 

, 1,M j M jC C −=                   0j >  (52b) 

 
where superscript j  refers to time; subscript i  refers to space, 

τΔ  is the time increment, and 'XΔ is the space increment in 
equation (50). 

The space domain 'X and time domain τ  are discretized by a 

rectangular grid of points ( ),i jX τ′  with mesh-size and X τ′Δ Δ , 

respectively: 
' ' ' ' '

1 0, 1,2,..., , 0, 0.05i iX X X i M X X−= + Δ = = Δ =   

1 0, 1,2,..., , 0, 0.0001j j Iτ τ τ τ τ−= + Δ = = Δ =j   

The contaminant concentration at a point for the space '
iX  

with j th subinterval of time τ  denoted by ,i jC . 

 
Stability analysis  

 
In a similar approach used earlier, the finite difference 

scheme of the governing partial differential equation (50) can 
be rewritten as follows: 
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( ) ( ) ( ), 1 1 1 1, 1 1 , 1 1 1,2i j i j i j i jC C C Cβ ξ α β β ξ+ − += + + − + −  (53) 
 

where 2
1 1

R

μα τ= − Δ , 11
1 '2

D

R X

τβ Δ=
Δ

 and 12
1 '2

D

R X

τξ Δ=
Δ

. 

In matrix form, it can be written as follows: 
 

[ ] [ ]1j j
C B C

+ =  (54) 
 

where matrix B contains all the constants. 
On applying the same Gerschgorin circle method to deter-

mine the bounds of eigenvalues of matrix B , the stability 
criterion for the time step is obtained as follows: 

2
2 11

'

1

2

2

D

R R X

τ
μ

Δ ≤
 

+ 
Δ 

 (55) 

 

Accuracy 
 
To assess the accuracy of the solution, we compare the  

numerical solution to the analytical one. The accuracy is the 
degree of similarity of concentration values of the analytical 
result to that of the numerical result. We found that the solu-
tions were convergent, if the stability criterion was fulfilled. 
Towler and Yang (1979) adopted the criterion of comparison 
which was more systematic and consistent: (1) the RMSE 
(Root-Mean-Square Error) and (2) the absolute maximum error 
between the analytical solution and the numerical solution at all 
grid points. For testing the accuracy of the solutions obtained in 
the present work, we used RMSE which is one of the most 
commonly used measures to check the accuracy. The root mean 
square was used to calculate the average error at each point 
which is defined as follows: 

 

2

1

1
RMSE

N

i
i

C
N =

= Δ ; (56) 

 

where analytical numericalC C CΔ = − . 
Here, the number of data denoted by N  and the difference 

between analytical and numerical values is denoted by CΔ . 
 

NUMERICAL SIMULATION AND DISCUSSION 
 
This work considers the above derived solution of scale-

dependent and time-dependent dispersion with diffusion. The 
sensitivities to different parameters included in these solutions 
were explored. For the sake of simplicity, the contaminant 
behaviour predicted in the different geological formations con-
sidered three different types of velocity patterns: 1) exponen-
tially decreasing form, 2) sinusoidally varying form and 3) 
algebraic sigmoid form. These velocity patterns usually exist in 
the rainy season and reaches up to a certain limit over the peri-
od of time. Mathematically, the velocity expressions and their 
corresponding new time variable are derived as follows: 

1)  Exponential decreasing: ( )0 1expu u K mt= −  and 

1

2
0

1 0

1 K mtu
T e

K mD
− = −    

2)  Sinusoidal form: ( )0 1 14 cosu u K m K mt= π +    and 

( )
2

0
1 1

0 1

1
4 sin

u
T K t K mt

D K

 
= π + 

 
 

3)  Algebraic sigmoid: 
( )

0 2 2
1

mt
u u

mt K

 =  
+  

 and 

( )
2

2 20
1 1

0

u
T mt K K

mD
 = + −  

  

 
where m is the flow resistance coefficient and 1K is the mean 

travel time corresponding to dispersion and diffusion. The first 
two have been used by Aral and Liao (1996) and Singh et al. 
(2009) without an impact of mean travel time and the last one is 
based on the properties of an algebraic sigmoid function which 
includes the error function. The sinusoidal form of the velocity 
pattern represents the nature of groundwater contamination in 
the tropical region in which the fluctuation behavior of 
groundwater recharge is shown. But the exponentially decreas-
ing form of velocity shows a decreasing nature of contaminant 
concentration (Jain et al., 2007; Singh and Singh, 2001). The 
algebraic sigmoid form includes the error function. It starts to 
progress from a small beginning, accelerates in the rainy sea-
son, and then reaches a limit over a period of time. 

For graphical representation of the analytical solution given 
in equation (20), the set of input values was given as 

1
0 0 0

–0.01, 1.0, 0.0001 year , 0.01 km/year,ic c uμ= = = =  
2

0 0 1

* 2
0

0.1 km /year, 0.001, 0.0007, 0.07, 0.25,

0.7, 2.0 km, 0.000015 km /year,

dD K k

Pe D

λ γ

α

= = = = =

= = =
10.32 gravel, 0.55 clay, 0.04 yearn m −= =  

The non-dimensional length of the aquifer was considered in 
the range 0 0.1X< ≤ . The concentration pattern is depicted for 
1, 1.5 and 2 years, respectively. The source was assumed to be 
activated from 1 year in the domain of geological formation. 
The effect of source contaminant was predicted for the regular 
interval of six months. The effects of the various parameters are 
shown by the graph. The different velocity patterns are also 
revealed through Fig. 1 to Fig. 3. 

The distribution pattern of the contaminant concentration 
was high in the aquitard compared to the aquifer for the same 
time interval and ultimately it went to its minimum harmless 
concentration with distance. The exponentially decreasing form 
of velocity with mean time in the direction of flow i.e., longitu-
dinal direction, is described in Fig. 4. Fig. 5 shows for the si-
nusoidally varying form of the velocity pattern, where the dis-
tribution pattern of the concentration decreases with decreasing 
values of dispersivity Q . The dispersivity effect with respect to 

concentration levels is predicted up to a distance of 1.0 km  
in the domain. From Fig. 5, it is clear that the concentration  

 

 
 

Fig. 1. Exponentially decreasing velocity pattern. 
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Fig. 2. Sinusoidally varying velocity pattern. 

 

 
Fig. 3. Algebraic sigmoid velocity pattern. 

 
Fig. 4. The concentration distribution pattern for space dependent 
dispersion with exponentially decreasing velocity. 

 

 
 

Fig. 5. The concentration distribution pattern for space dependent 
dispersion with sinusoidal form of velocity in aquifer (i.e., gravel) 
with respect to dispersivity. 

levels increase with increasing dispersivity of the solute. The 
algebraic sigmoid form of velocity depicts the contaminant 
concentration for different values of the mean travel time in the 
longitudinal direction and is revealed in Fig. 6. The contami-
nant concentration increases with decreasing values of the mean 
travel time. The mean travel time is particularly evaluated from 
the linear combination of dispersion and diffusion in the porous 
formation with longitudinal flow direction. So, if the value of 
the solute in the longitudinal direction slightly increases or 
decreases the mean travel time changes accordingly. The little 
variation for the source concentration is also observed only due 
to the time dependent source concentration taken into consider-
ation at the origin of domain. 

Different types of the velocity expression were considered 
for the pictorial representation of the obtained analytical solu-
tion given in equation (35) for the time dependent dispersion. 

1)  Exponential decreasing: 
( )1

0
1
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u u
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3)  Algebraic sigmoid: 
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For graphical representation, the one-dimensional analytical 
solution of the homogeneous advection dispersion equation 
with the time-dependent dispersion given in equation (35) was 
computed for the set of input data: 

0 0

2
0 0 0

* *
1

0.01, 1.0, 0.01 km/year, 0.1 km /year,

0.001, 0.0007, 0.25, 0.0001, 0.07,

i

d

c c u D

k Kλ γ μ

= = = =

= = = = =
* 2

1

0.000015 km /year, 0.32 gravel, 0.55 clay,

0.04 year

D n

m −

= =

=
 

The length of the domain for the time-dependent dispersion 
was taken 0 0.1X≤ ≤ . The source of contaminant was predict-
ed for the same time intervals: 1, 1.5 and 2 years, respectively, 
as discussed earlier. 

From Fig. 7, it is clear that the concentration values near the 
source decrease with time in the aquitard as compared to the 
aquifer, but the trend is just reverse after some distance say 
0.01. This may happen due to the inclusion of mean travel time 
in the velocity expression. It is also depicted that the concentra-
tion values decrease with distance in both the geological for-
mations. The level of contaminant concentration is observed 
slightly higher in the time-dependent dispersion as compared to 
space-dependent dispersion. This can be shown through Fig. 4 
and Fig. 7. 

The contaminant concentration values are different for dif-
ferent values of zero order production term in the sinusoidal 
form of velocity. The fluctuation of the source concentration in 
the domain is observed due to time-dependent source input 
concentration. The concentration level for the different time 
intervals decreased near the source and approximately up to 
some distance but after damping, it showed the reverse pattern  
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Fig. 6. The concentration distribution pattern for space dependent 
dispersion with algebraic sigmoid form of velocity in aquitard (i.e., 
clay) with respect to mean travel time. 

 
Fig. 7. The concentration distribution pattern for time dependent 
dispersion with exponentially decreasing form of velocity in aqui-
fer (i.e., gravel) and aquitard (i.e., clay). 
 

 
Fig. 8. The concentration distribution pattern for sinusoidal form of 
velocity in aquifer (i.e., gravel) with respect to the zero order pro-
duction term. 
 
i.e., the concentration level slightly increased with increasing 
time period beyond some distance. Then slowly the concentra-
tion level became stable with respect to distance. As we  
increased the value of zero order production term, the concen-
tration values increased with their respective time, but ulti-
mately the concentration level became stable after some distance.  

 
Fig. 9. The concentration distribution pattern for the algebraic 
sigmoid form of velocity in aquifer (i.e., Gravel) and aquitard (i.e., 
Clay). 

 
Fig. 10. The concentration distribution patterns for the constant 
dispersion with diffusion with respect to retardation factors. 
 

 
Fig. 11. The concentration distribution pattern for the linear disper-
sion with diffusion with respect to the dispersivity. 
 
So, the fluctuation nature in the tropical region is described for 
the sinusoidal form of the velocity pattern in Fig.8. 

In Fig.9, we have discussed the algebraic sigmoid form of 
the velocity pattern. We observed that the solute concentration 
increased in the aquitard where the transfer rate of the liquid 
was low as compared to the aquifer. So, the level of contami-
nant concentration pattern was minimum in the aquifer as com-
pared to the aquitard. 
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Fig. 12. The concentration distribution pattern for the exponential 
dispersion with diffusion with respect to the retardation factors. 

 
 

Fig. 13. Comparision between the concentration distribution pat-
tern of the analytical numerical solution for the gravel medium. 

 

 
Fig. 14. Comparision between the concentration distribution pat-
tern of the analytical and numerical solution for the clay medium 
along sinusoidal velocity pattern. 

 
The time-dependent dispersion for the concentration distri-

bution pattern was described only for the asymptotic type of 
dispersion (Basha and El-Habel, 1993). In view of this, we 
discussed the three different types of generalized cases for the 
time dependent function which are as follows: 

1)  Constant dispersion: 1( )f mt K=  and 
2

0 1

0

u K t

D
τ =  

 
 

Fig. 15. Comparision between the concentration distribution pat-
tern of the analytical and numerical solution for the gravel medium. 

 
 

Fig. 16. Comparision between the concentration distribution pat-
tern of the analytical and numerical solution for the clay medium 
along sinusoidal velocity pattern. 

2)  Linear dispersion: ( )f mt t=  and 
2 2

0

1 02

u t

K D
τ =  

3)  Exponential: 1
1

( ) 1 exp
t

f mt K
K

  
= − −  

   
 and 

2
0

1
0 1

exp 1
u t

K t
D K

τ
  

= + − −  
   

 

The same input values are considered for the computation of 
the solution given in Eq. (35) with parameters like dispersivity 

1Q = , retardation factor 1R = and the diffusion coefficient

* 0D = which were taken by Basha and El-Habel (1993). Fig. 

10 depicts the contaminant concentration for the constant type 
of dispersion with the same value that was already used for the 
time-dependent dispersion. In Fig. 10, we also explore the 
contaminant concentration for the constant type of dispersion 
for different values of the retardation factor. From this, we 
observed that the values of contaminant concentration de-
creased at each of the positions compared with the concentra-
tion values with respect to the retardation factor used by Basha 
and El-Habel (1993). In both cases, the concentration pattern 
attained its minimum concentration level after traveling some 
distance. The contaminant concentration pattern was also pre-
dicted for the linear and exponential types of dispersion in  

Fig. 11 and Fig. 12 with the mean travel time *
1K D Q= +  and 
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*
1 0.632K Q D= + (Basha and El-Habel, 1993), respectively. 

The contaminant concentration was predicted for the same set 
of data except 1, * 0, 1.7R D Q= = = , as shown in Fig. 11. 

From this, we observed that the value of contaminant concen-
tration decreased with increasing values of dispersivity with 
their respective time and attained its minimum concentration 
level with respect to their respective distances. Due to the ex-
ponentially decreasing term present in the exponential disper-
sion, the value of the dispersivity slightly changed from 1 to 1.5 
for their respective mean travel times. From Fig.12, we observe 
that the contaminant concentration values for the exponential 
type of dispersion also decreased compared to the value of 
retardation factor taken by Basha and El-Habel (1993) at each 
of the positions. 

In Figs. (13) and (14) the predicted concentration distribu-
tion pattern for the space-dependent diffusion is presented, 
whereas Figs. (15) and (16) show the predicted concentration 
distribution pattern for the time-dependent diffusion. The nu-
merical result is predicted for the same set of input values 
which is taken for the analytical result. Comparison of the 
analytical result to the numerical one with different velocity 
patterns, and the concentration distribution pattern for the grav-
el medium with average porosity (0.32) for different time dura-
tion, are shown in Fig. 13. The concentration values by the 
analytical solution for the exponential decreasing form of the 
velocity pattern yielded decreasing values at each of the posi-
tions as compared to the numerical solution. The concentration 
values increased at each of the positions with increasing time 
duration for both solutions i.e., analytical and numerical. Simi-
lar types of contaminant concentration were depicted for the 
algebraic sigmoid form of the velocity pattern which showed 
the fluctuation pattern of groundwater after rainy seasons. From 
both the solutions, we observed that concentration values were 
higher in the case of the exponential decreasing velocity pattern 
as compared to the algebraic sigmoid form of the velocity for 
both time durations. The contaminant concentration decreased 
with distance and increased with time. From Fig. 14 the mini-
mum concentration values were observed at each of the posi-
tions in the case of numerical solution as compared to the ana-
lytical solution for the sinusoidal form of the velocity pattern 
for the clay medium with the average porosity of 0.32. The 
concentration values increased with time and decreased with 
distance for both the analytical and numerical. Fig.15 follows 
the reverse nature of the concentration distribution for different 
velocities in the case of analytical and numerical solutions of 
 

time-dependent diffusion as in Fig.13. Analytical solutions 
yielded high concentration values as compared to the numerical 
solution for both exponentially decreasing and algebraic sig-
moid forms of the velocity pattern. In the case of t = 1.5 years, 
the numerical solution for exponentially decreasing velocity 
forms initially produces less concentration values than did the 
analytical solution. However, after some distance the concen-
tration values were observed to be approximately the same for 
both the solutions. We also observed from Fig. 15 that the 
concentration values were higher for the exponentially decreas-
ing form of velocity than for the algebraic sigmoid form of the 
velocity pattern for both the solutions. The concentration distri-
bution for the sinusoidal form of the velocity pattern is depicted 
in Fig. 16. We observed that initially the source of concentra-
tion was the same for the entire duration of time, but in the first 
year the numerical solution gave lower concentration values 
than did the analytical one and after some distance it gave the 
reverse pattern. For the next 1.5 and 2 years the concentration 
distribution pattern followed the reverse pattern. In the respec-
tive years the numerical solution gave higher concentration 
values than did the analytical solution. Also the numerical 
solutions followed the uniform nature of the decreasing concen-
tration pattern after covering some distance. Finally from Fig. 
16, it is observed that at the end of the domain the concentra-
tion values were higher in the case of numerical solution than 
for the analytical solution. 

RMSE of clay and gravel media for the fixed time duration 
i.e., 2 years are tabulated for the space-dependent dispersion 
with diffusion, as shown in Tables 1(a) and 1(b), respectively. 
However, RMSE of the same is tabulated for the time-
dependent dispersion with diffusion, as shown in Tables 2(a) 
and 2(b), respectively. Tables 1(a) and 1(b) are tabulated for the 

fixed space and time increments i.e., ' 0.01,  0.0001X TΔ = Δ = , 
however, Tables 2(a) and 2(b) are tabulated for the fixed space 

and time increments, i.e., ' 0.05,  0.0001X τΔ = Δ = . It is ob-
served from Table1 (a) that the RMSE value is minimum for 
the exponentially decreasing and sinusoidal forms unlike the 
algebraic sigmoid form of the velocity patterns of the clay 
medium. Similar observations were made for the gravel medi-
um with a fixed time duration of 2 years. From Table 1 (a) and 
1 (b), it is clear that the RMSE values were lower in the aquifer 
(i.e., gravel) medium than in the aquitard (i.e., clay) medium for 
different respective velocity patterns. 

From Table 2 (a) and (b) the RMSE values were minimum 
for the algebraic sigmoid but maximum for the exponentially 
 

Table 1(a). RMSE of the clay medium for average porosity (0.55) with 2 years duration for scale dependent dispersion with diffusion. 
 

Exponential decreasing Sinusoidal form Algebraic sigmoid 
Distance Analytical result Numerical result Analytical result Numerical result Analytical result Numerical result 

0.02 0.4391 0.4407 0.4209 0.4295 0.2559 0.2852 
0.04 0.1289 0.1267 0.1150 0.1181 0.0343 0.0418 
0.06 0.0344 0.0326 0.0302 0.0301 0.0164 0.0169 
0.08 0.0196 0.0186 0.0190 0.0183 0.0179 0.0177 
0.10 0.0199 0.0178 0.0199 0.0178 0.0199 0.0182 

RMSE 0.00179 0.00420 0.01354 

 
Table 1(b). RMSE of the gravel medium for average porosity (0.32) with 2 years duration for scale dependent dispersion with diffusion. 
 

Exponential decreasing Sinusoidal form Algebraic sigmoid 
Distance Analytical result Numerical result Analytical result Numerical result Analytical result Numerical result 

0.02 0.3844 0.3857 0.3655 0.3741 0.2018 0.2307 
0.04 0.0903 0.0895 0.0791 0.0827 0.0229 0.0287 
0.06 0.0239 0.0236 0.0217 0.0223 0.0160 0.0163 
0.08 0.0183 0.0178 0.0181 0.0177 0.0179 0.0177 
0.10 0.0199 0.0179 0.0199 0.0179 0.0199 0.0183 

RMSE 0.00115 0.00427 0.01320 
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Table 2(a). RMSE of the clay medium for average porosity (0.55) with 2 years duration for time dependent dispersion with diffusion. 
 

Exponential decreasing Sinusoidal form Algebraic sigmoid 
Distance Analytical result Numerical result Analytical result Numerical result Analytical result Numerical result 

0.1 0.8934 0.9213 0.8899 0.9145 0.8469 0.8384 
0.2 0.7951 0.8587 0.7870 0.8427 0.6976 0.6745 
0.3 0.7004 0.8012 0.6883 0.7766 0.5612 0.5246 
0.4 0.6113 0.7600 0.5960 0.7294 0.4429 0.4179 
0.5 0.5296 0.7487 0.5120 0.7165 0.3455 0.3887 

RMSE 0.13046 0.11926 0.02978 

 
Table 2(b). RMSE of the gravel medium for average porosity (0.32) with 2 years duration for time dependent dispersion with diffusion. 
 

Exponential decreasing Sinusoidal form Algebraic sigmoid 
Distance Analytical result Numerical result Analytical result Numerical result Analytical result Numerical result 

0.1 0.8822 0.8946 0.8778 0.8867 0.8270 0.8086 
0.2 0.7699 0.8041 0.7606 0.7858 0.6592 0.6144 
0.3 0.6631 0.7209 0.6495 0.6930 0.5098 0.4381 
0.4 0.5645 0.6613 0.5477 0.6266 0.3853 0.3137 
0.5 0.4761 0.6454 0.4574 0.6089 0.2882 0.2809 

RMSE 0.09240 0.07972 0.05033 

 
decreasing form of the velocity pattern. The aquifer (i.e., grav-
el) had minimum values of RMSE other than the aquitard (i.e. 
clay) medium for different respective velocity patterns except 
the algebraic sigmoid form. The RMSE was minimum for clay 
as compared to gravel for the algebraic sigmoid form of the 
velocity pattern. So, the RMSE values were close for the gravel 
medium for both space- and time-dependent diffusion (except 
algebraic sigmoid). For space-dependent diffusion RMSE was 
very close for the exponential decreasing velocity, whereas in 
the case of time-dependent diffusion result the closest values 
were found for the algebraic sigmoid form of the velocity pattern.  
 
SUMMARY AND CONCLUSION  

 
Based on the present study two analytical models were  

developed for one-dimensional solute transport in the  
semi-infinite domain with the distance-dependent and time-
dependent dispersivities. The level of the contaminant concen-
tration is predicted for the aquifer and aquitard. The result is 
also compared with input parameters considered by Basha and 
El-Habel (1993). We can conclude as follows: 

1. Analytical solutions are obtained using LITT for 
space-dependent as well as time-dependent dispersion with 
diffusion which are useful to benchmark numerical codes and 
solutions. These solutions may be applicable as a preliminary 
predictive tool in groundwater resource and management. 

2. Analytical results are compared with numerical ones 
and the agreement between them is found to be very good. The 
accuracy of results is verified by RMSE values. 

3. The concentration distribution is obtained for different 
geological formations, such as aquifer and aquitard, with vary-
ing velocity field and it is found that the concentration values 
are less in aquifer than in aquitard. 
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NOMENCLATURE 
 
The following symbols are used in this paper: 

 
D  Longitudinal dispersion coefficient; [L2T–1]  

*D  Molecular diffusion coefficient; [L2T–1] 
c  The volume averaged dispersing solute concentration 

in the liquid phase; [ML–3]  
F   The volume averaged dispersing solute concentration 

in the solid phase; [ML–3]  

ic  Initial concentration; [ML–3]  
0c  Source concentration; [ML–3]  

λ  The decay rate constant; [T–1]  
u  Unsteady uniform pore seepage velocity; [LT–1] 

dK  Distribution coefficient 

0D  Initial dispersion coefficient; [L2T–1] 

0u  Initial seepage velocity; [LT–1]  

n  Porosity of the different geological formation 
x  The longitudinal direction of flow; [L] 
m  The flow resistance coefficient; [T–1] 
t   Time variable; [T]  

*T  New time variable; [T] 
*τ  New time variable; [T] 

μ  First order decay rate coefficients; [T–1] 
γ  Zero order production rate coefficient; [ML–3T–1]  

R  Retardation factor 
Pe  Peclet number 
Q  Maximum dispersivity; [L]  

1K  The mean travel time; [T] 

( )f mt  The generalised case of the time-dependent function 

1c , 2c  Arbitrary constants 

0μ  Initial first order decay rate coefficients; [T–1] 
*
0μ  Initial first order decay rate coefficients; [T–1] 

0γ  Initial zero order production rate; [ML–3T–1] 
*
0γ  Initial zero order production rate; [ML–3T–1] 

q  Growing rate of dispersivity along the space 

0α  Asymptotic dispersivity; [L] 
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