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Abstract: This paper investigates the impact of surface soil moisture assimilation on the estimation of both parameters 
and states in the Soil and Water Assessment Tool (SWAT) model using the ensemble Kalman filter (EnKF) method in 
upper Huai River basin. The investigation is carried out through a series of synthetic experiments and real world tests  
using a merged soil moisture product (ESA CCI SM) developed by the European Space Agency, and considers both the 
joint state-parameter updating and only state updating schemes. The synthetic experiments show that with joint state-
parameter update, the estimation of model parameter SOL_AWC (the available soil water capacity) and model states (the 
soil moisture in different depths) can be significantly improved by assimilating the surface soil moisture. Meanwhile, the 
runoff modeling for the whole catchment is also improved. With only state update, the improvement on runoff modeling 
shows less significance and robustness. Consistent with the synthetic experiments, the assimilation of the ESA CCI SM 
with joint state-parameter update shows considerable capability in the estimation of SOL_AWC. Both the joint state-
parameter update and the only state update scheme could improve the streamflow modeling although the optimal model 
and observation error parameters for them are quite different. However, due to the high vegetation coverage of the study 
basin, and the strong spatial mismatch between the satellite and the model simulated soil moisture, it is still challenging 
to significantly benefit the runoff estimates by assimilating the ESA CCI SM. 
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INTRODUCTION 

 
In hydrological simulation and forecasting, soil moisture 

(SM) produces significant impact on rainfall-runoff process. 
Over the past years, a large body of studies have been carried 
out to discuss the approaches to improving the estimation of 
SM, in turn to improve the streamflow simulation and forecast 
in hydrological modeling (Alvarez-Garreton et al., 2014, 2015; 
Brocca et al., 2012; Crosson et al., 2002; Crow and Ryu, 2009; 
Laiolo et al., 2015; Lunt et al., 2005; Reichle et al., 2008; 
Walker et al., 2001). 

A promising approach to improving SM estimation and 
rainfall-runoff modeling is to integrate the observations of SM 
into hydrological modeling by the means of data assimilation 
(DA) techniques. This is due to the fact that the DA techniques, 
especially the newly developed sequential DA techniques (e.g., 
the ensemble Kalman filter, EnKF), provide an integrated 
framework to analyze all sources of uncertainties in 
hydrological modeling including model inputs, model 
parameters and model structures and the output observations 
(Wang et al., 2009). The SM data utilized in the assimilation 
can be obtained by two ways: field measurement and remote 
sensing observation. Aubert et al. (2003) assimilated the in-situ 
SM and streamflow in a lumped conceptual rainfall-runoff 
model using an extended Kalman filter, and demonstrated that 
the assimilation of SM data is particularly effective during 
flood events. Lee et al. (2011) assimilated the in situ soil 
moisture and streamflow data into a gridded Sacramento and 
kinematic-wave routing model and found that the prediction of 
soil moisture and streamflow significantly improved. Other 
studies on in-situ SM assimilation include Heathman et al. 
(2003), Lü et al. (2011) and Yu et al. (2012, 2014). However, 

the field measurements can only provide SM on point scale, 
which usually fails to fully represent the spatial variability of 
SM. With the development of the remote sensing techniques 
since the 1990s, a large body of studies on assimilating satellite 
SM observations to improve hydrological modeling have been 
carried out from two aspects. One is mainly to evaluate the 
performance of SM assimilation in improving rainfall-runoff 
modeling by designing synthetic experiments (Chen et al., 
2011; Crow and Ryu, 2009; Han et al., 2012; Reichle et al., 
2008; Xie and Zhang, 2010). The other is to assimilate the 
satellite SM retrievals to improve the hydrological modeling 
(Alvarez-Garreton et al., 2014, 2015; Laiolo et al., 2015; 
Lievens et al., 2015). The popularity of satellite SM 
assimilation is due to the fact that the satellite observations 
could provide SM estimates with good spatial coverage and 
regular frequent time intervals, which is a valuable for rainfall-
runoff modeling, especially on large scales and in sparsely 
monitored catchments. 

To date, the assimilation of SM mainly focuses on 
improving the estimation of hydrological states and assumes 
that the parameters are relatively accurate and reliable in the 
model propagating process. This is mainly attributed to the 
present data quality of the remote sensing SM and its large 
uncertainties that are quite difficult to quantify. Besides, it can 
be related to the fact that the parameter estimation is more 
difficult than state estimation in hydrology as the relation 
between parameters and states are nonlinear in most 
hydrological models and the model parameters cannot be 
directly measured like states (Xie and Zhang, 2013). On the 
other hand, the parameters are hardly to be accurately tuned to 
represent the real physical coupling of the system based on the 
hydrological measurements (e.g., runoff measured at gauges) in 
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automatic calibration with certain objectives (Moradkhani et 
al., 2005). The biased parameters may lead to system bias in 
hydrological modeling (Chen et al., 2011; Troch et al., 2003), 
which will deteriorate the state update in the assimilation 
process (Moradkhani et al., 2005). Therefore, the joint state-
parameter update are necessary in the assimilation process. In 
terms of SM assimilation, the parameters closely related to the 
soil property or soil water routing process can be expected to be 
estimated by assimilating the SM measurements considering 
the development of the remote sensing techniques (Barre et al., 
2008; Das et al., 2014; Entekhabi et al., 2010) and the great 
efforts on SM retrievals in recent years (Das et al., 2011; Njoku 
et al., 2003). However, to our knowledge, the joint state-
parameter estimation via the assimilation of the surface SM is 
mainly carried out through the synthetic experiments (e.g., 
Chen et al., 2015). 

In this study, we not only use the synthetic experiments but 
also attempt to use the real world tests to investigate the per-
formance of assimilating surface SM for the joint estimation of 
parameters and states (SM in different depths) in SWAT model 
using the ensemble Kalman filter (EnKF) method in the upper 
Huai River basin. As a comparison, we also analyze the impacts 
of updating only the state (SM in different depths) on rainfall-
runoff modeling, where the parameters are not updated. By 
comparing the two cases, we want to check if the states and 
parameters can be estimated simultaneously by assimilating the 
surface SM, and if the joint state-parameter update scheme is 
superior to the scheme where only the state is updated. 

Through the following sections of this article, the SWAT 
model and the EnKF approach for state and parameter 
estimation are described first. Then the study basin, the data 
utilized and the implementation of SM assimilation are 
introduced. After that, the results of surface SM assimilation 
are analyzed. Finally, the conclusions are drawn in the last 
section. 

 
METHODOLOGY 
Soil and water assessment tool (SWAT) 

 
SWAT is a physically based basin scale distributed model 

developed by the USDA (United States Department of 
Agriculture) Agricultural Research Service (USDA-ARS) 
(Neitsch et al., 2011). It has been widely used in rainfall-runoff 
modeling in the field of hydrology in recent years (Chen et al., 
2011; Xie et al., 2014). For hydrological modeling, the 
catchment is geographically divided into subbasins; then, each 
subbasin is further delineated into several Hydrological 
Response Units (HRUs) with the same information on land 
cover, soil and slope steepness. HRUs are the basic calculation 
units for the land phase of hydrologic cycle including the 
surface runoff generation, evapotranspiration, soil water 
routing, and groundwater generation processes. 

Soil moisture plays a central role in the above processes in 
SWAT simulations. The water infiltrated or percolated to soil 
profile after surface runoff generation is redistributed using a 
storage routing technique with its field capacity as a threshold. 
The water balance equation for each soil layer can be expressed 
as: 

 

, , ,ly perc ly lat ly a lly yS W EW S w' Q= + Δ − −  (1) 

 
where SWly and SW'ly are the soil water content (mm) at the start 
and end of the day respectively, Δwperc,ly is the net percolation 
received in the layer ly (i.e. the percolation or infiltration from 
the overlying layer minus that to the next layer), Qlat,ly is the 

lateral flow generated from layer ly, Ea,ly is the 
evapotranpiration drawn from the layer ly. 

The percolation (wperc,ly) from layer ly is calculated as: 
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where FCly is the soil water content of layer ly at field capacity 
(mm), Ksat,ly is the saturated hydraulic conductivity (mm/h), 
SATly is the amount of water in layer ly when completely 
saturated (mm). The percolation generated from the bottom of 
the sol profile is the source of ground water recharge. 

The lateral flow (Qlat,ly) of layer ly is calculated by: 
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where slp is the slope steepness (m/m), Lhill is the hill slope 
length, ,por lyφ is the total porosity of the soil layer (mm/mm) 

and ,fc lyφ is the porosity of the soil layer ly filled with water 

when it is at field capacity. 
The evapotranpiration drawn from the soil is mainly per-

formed by soil evaporation and plant uptake. The potential 
evapotranspiration and the potential plant uptake are simulated 
first using the Penman-Monteith equation (Monteith, 1965). 
The plant uptake under ideal conditions is a function of the 
potential plant uptake and the leaf area index. The potential soil 
water evaporation and the ideal plant water uptake in each layer 
on a profile are estimated using the depth distribution function. 
The actual soil water evaporation and plant uptake are con-
strained by the available soil water of a given layer and are not 
allowed to be compensated by other layers. However, this defi-
ciency can be made up by adjusting the soil compensation 
factor (ESCO) and the plant compensation factor (EPCO) to 
modify the depth distribution of the potential soil water evapo-
ration and the ideal plant uptake. 

The surface runoff, lateral flow and ground water generated 
on each HRU are aggregated to the main channel. SWAT in-
corporates a storage feature to calculate the surface runoff and 
lateral flow that can reach the main channel on current day, 
while a technique similar to the linear reservoir method is used 
to route the ground water to the main channel. The water rout-
ing through the channel network is realized by the variable 
storage routing method (Williams, 1969). 

 
The ensemble Kalman filter for state and parameter 
estimation  

 
The Ensemble Kalman filter (EnKF) is a sequential DA ap-

proach, which was first introduced by Evensen (1994). It incor-
porates the Monte Carlo method to generate a state ensemble to 
represent the probability distribution of the state. The state 
forecast is then achieved by propagating the ensemble members 
forward in time using the model independently with a stochas-
tic term representing the model errors (Evensen, 1994). The 
forecasted state ensemble θt

f at time t is given by: 
 

2
1–( , ) ~ (0, )f u

t t t t tF u w w N rθ θ= +  (4) 
 
where F represents the SWAT model in this study. θu

 t–1 is the 
updated state ensemble at time t–1. In this study, it includes the 
SM of four layers for all HRUs of the watershed. ut is the mod-
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el forcing input at time t, which is assumed to follow a normal 
distribution. wt is the stochastic perturbation of the forecast 
states, which reflects the model structure error and is assumed 
to be normally distributed with mean 0 and covariance of r2. 

The state update is obtained by: 
 

[ ( )]u f f
t t t t tK Z Hθ θ θ= + −  (5) 

 
where Zt is the observation matrix at time t, which includes the 
SM observations with a stochastic perturbation being  assumed 
to be normal distribution with mean 0 and standard deviation of 
ε. H is observation operator, which is used to map the model 
states to the observations. In the synthetic experiments, Zt in-
cludes the surface SM of all subbasins, and H is constructed by 
0 and the area proportions of HRU in subbasins as the simulat-
ed SM are on HRU level while the synthetic surface SM obser-
vations are on subbasins. In the real world test, Zt are the sur-
face SM on the remote sensing grids covering the whole basin, 
so, H is constructed by 0 and the area proportions of HRU in 
the grids as the simulated SM are on HRU level while the SM 
observations are on the grids. Kt is the Kalman gain at time t, 
which defines the weight of modeling and observation and is 
calculated by the forecast error covariance and the observation 
error covariance: 
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where Pms,t is the cross error covariance between the predicted 
states θt

f and the measurement prediction H(θt
f) at time t, Ps,t is 

the error covariance of the measurement prediction at time t, Rs,t 

is the error covariance of the observations at time t. 
The joint state-parameter updating in state augmentation 

technique is done by concatenating the states (θt
f) with the 

parameters (δt
f) in the state vector, see equation (7), and the 

parameter update is the same with that of the state update de-
scribed in equations (5) and (6)): 
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Since the parameters (δt

f) are not observed, the observation 
operator for the joint state-parameter updating is: 
 

[ ]* 0H H=  (8) 

 
K*

t is the Kalman gain for joint state-parameter update. Its 
calculation is similar to the Kalman gain (Kt) in equation (6) but 
with Pms,t changing to the cross error covariance between the 
predicted states and parameters (([θ δ]t

f)T ) and the measurement 
prediction H(θt

f) at time t. 
It is worth noting that the joint state-parameter updating re-

quires an evolution of the parameters to avoid ensemble shrink-
age and filter degeneracy. In this study, the conditional covari-
ance inflation method (Aksoy et al., 2006) is adopted as de-
scribed by: 
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where f
tδ is the forecast parameter ensemble at time t and 1

u
tδ −  

is the updated parameter ensemble at time t–1. T is the pre-
scribed threshold set as the initial variance multiplied by a 
scaling factor γ  in this study. Considering that model blow-up 

commonly occurred in the assimilation process due to over 
updating to the parameters, a smoothing factor β (between 0 

and 1.0) is applied to dampen the rapid temporal variation of 
parameters (Yang and Delsole, 2009): 
 

1 1(1 ) ff u
t t tδ β δ βδ− −= − +  (10) 

 
where β = 0 reflects that there is no smoothing in the parameter 

updating process, the larger value of β indicates the stronger 

smoothing on parameter update. 
 
STUDY AREA AND DATA USED 

 
The study catchment is located in the upper Huai River basin 

within 113°15′E～113°55′E and 32°10′N～32°45′N in China 
(Figure 1). It covers an area of about 1640 km2 with the 
elevation ranging from 109 m to 953 m. The basin is located in 
the transition zone between the northern subtropical and the 
warm temperate zones. Average annual precipitation is about 
900 mm, of which 50% to 80% falls during June to September. 
The dominant land cover is rice (56%) and forest (22%). Sandy 
loams and silt loams are the main soil types. 

The SWAT model requires the meteorological forcing data 
and the underlying land surface data. The meteorological data 
are the precipitation, maximum/minimum air temperature, solar 
radiation, wind speed and relative humidity. The precipitation is 
provided by 12 local rainfall gauges in the basin (Figure 1). 
Other five meteorological data above are collected from 
Xinyang meteorological station near the basin. The land surface 
data includes the digital elevation data (DEM), soil category 
and the land cover data. The DEM data is downloaded from the 
Shuttle Radar Topography Mission (SRTM) with a spatial 
resolution of 90 m (http://datamirror.csdb.cn/index.jsp). The 
land use data is resampled from a year-1995 land use map at a 
scale of 1:210000 provided by the government of Xinyang city. 
The soil data is resampled from a soil map at a scale of 
1:100000 collected from Soil Handbook of Henan province. 
According to this handbook, the soil of this basin can be 
classified into 5 categories, of which the soil texture and the 
corresponding USDA (United States Department of 
Agriculture) classification as well as the area proportions are 
given in Table 1. Based on the above data sets, the catchment is 
divided into 15 subbasins. The subbasins are further divided 
into 55 HRUs. Besides, the soil on profile is dived into four 
layers (0–50 mm, 50–200 mm, 200–400 mm and 400–800 mm) 
from top to bottom, except for Cugutu with two layers (0–50 
mm, 50–200 mm).  

The ESA CCI SM product was developed in the Climate 
Change Initiative (CCI) projects by the European Space 
Agency (ESA). It combines the soil moisture retrievals from six 
passive (SMMR, SSM/I, TMI, AMSR2, AMSR-E and 
Windsat) and two active (ERS AMI and ASCAT) microwave 
sensors into a global data set spanning over 30 years from 1978 
to 2014 (product version 02.2). The ESA CCI SM product 
consists of three surface SM datasets: the active, passive and 
combined product. The active and passive datasets were created 
by fusing scatterometer and radiometer SM products 
respectively, while the combined product is a merged product 
of both the active and passive products. We use the combined 
ESA CCI SM product in this study, which is downloaded from  
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Fig. 1. The upper Huai River catchment. Note: the number 1 to 15 
represents the subbasin number. DPL means Dapoling runoff 
station. 
 
(http://www.esa-soilmoisture-cci.org/node/145) with a spatial 
resolution of 0.25° and a temporal resolution of 1 day with the 
reference time at 0:00 UTC. 
 
IMPLEMENTATION OF SURFACE SOIL MOISTURE 
ASSIMILATION 

 
The uncertainties of hydrological modeling are included in 

the meteorological forcing inputs, model parameters and model 
structures. These uncertainties are quantified by the variance of 
the ensemble members in EnKF, and each ensemble member is 
generated by the perturbations on model forcing inputs 
(including the precipitation and the minimum and maximum 
temperature), sensitive model parameters and the predicted SM 
presented in Table 2. Precipitation at each site is perturbed with 
a multiplicative error (Clark et al., 2008; Xie and Zhang, 2010) 
to avoid negative values after perturbation. The standard 
deviations (STD) of the multiplicative error (σp) reflect the 
instrument error and the error of the spatial representativeness 
of the rainfall gauges. Both the maximum and minimum 
temperature are perturbed by an additive error with a STD of 
1.0℃, which is also adopted by Chen et al. (2011). The model 
states (the SM at 4 layers) are perturbed using Gaussian 
multiplicative error to account for the uncertainties in model 
structures. This small error design of 0.01 is to avoid rapid 
changes of soil water content between continuous time steps. 
Besides, it prevents the spurious correlations between the 
surface SM and the SM in depths, especially when the model 
has weak vertical coupling in soil water routing process. In 
addition, the parameters sensitive to SM are assumed to be 
uniformly distributed within their potential value ranges. 
Regarding to the uncertainty of the surface SM observation, an 
additive error of 0.04 mm/mm is adopted (Crow and Wood,  
 

2003; Reichle et al., 2008). In the conditional covariance 
inflation approach, the scaling factor γ  used to determine the 
threshold T is set to 0.01 and the smoothing factor β  is 
assumed 0.8 (Yang and Delsole, 2009) to dampen the rapid 
temporal variation of parameters during parameter evolution 
process. 

In the synthetic experiment, three sets of data are generated, 
i.e., the synthetic truth run, ensemble open loop (EnOL) run and 
EnKF run. The synthetic truth is one realization of SWAT 
model running by adding perturbations on model inputs and 
model parameters. The synthetic surface SM observations (0–
50 mm) on subbasins are generated by adding the observation 
errors (Table 2) to the synthetic “true” subbasin average SM 
from the assumed true model running process. The EnOL run is 
an ensemble running of SWAT model with perturbations on 
model inputs, model parameters and model states (SM in dif-
ferent depths) described in Table 2. The EnKF run is an ensem-
ble running of SWAT model with the same error assumption to 
EnOL, but with the integration of the synthetic surface SM 
observations during the model propagation process. Here, two 
schemes are considered in the EnKF run: (1) the EnKF_SP, 
where both the SM and parameters sensitive to SM are simulta-
neously updated via EnKF method; (2) the EnKF_S, where 
only the SM are updated after the bias caused by the parameters 
is removed by the joint state-parameter update scheme of the 
first 200 days. The ensemble size of EnOL and EnKF is set as 
100 considering the requirement on the accuracy and the com-
putational burden. The performance of SM assimilation is illus-
trated by comparing the results of EnKF to that of EnOL based 
on the synthetic truth. In order to ensure the robustness of the 
analysis results, ten synthetic truths are generated considering 
the possible different performance of SM assimilation in differ-
ent conditions (dry or wet situations). The model initialization 
is from Jan 1, 2005 to Dec 31, 2005, and the assimilation is 
from Jan 1, 2006 to Dec 31, 2008. 
In the real world test, the combined ESA CCI SM product is 
assimilated. The assimilation of satellite soil moisture is a com-
plex task, the success of which highly relies on the appropriate 
assumptions on the rescaling techniques and the model and 
observation errors (Massari et al., 2015). Here, the cumulative 
distribution function (CDF) matching method (Reichle and 
Koster, 2004) is used with 3 year training window (from 2003-
1-1 to 2005-1-1) to remove the biases between the satellite SM 
and the model simulated SM before assimilation, which have 
been proved to be effective in many previous researches (e.g., 
Alvarez-Garreton et al., 2014).  Then the biased removed ESA 
CCI SM data are assimilated for the period from Jan 1, 2006 to 
Dec 31, 2008. 

In terms of the error set for model and observations, we will 
assume an appropriate value first, and then attempt to explore 
the sensitivity of the assimilation results to the error parameters 
of model and observations. For the model error, a Gaussian 
multiplicative perturbation with the standard deviation (σp) of 
0.4 is put on the precipitation; the parameters sensitive to SM 
(i.e., SOL_AWC for different soil types) are perturbed by a  
 

Table 1. Soil classification and its physical properties for the study basin. 
 

Chinese soil type 
Clay Silt Sand Rock USDA soil 

texture 
Area coverage (%) 

Φpor 

(mm/mm) 
Φwp 

(mm/mm) (%) (%) (%) (%) 
Cugutu 7.05 34 35.9 23.1 Sandy loam 40.6 0.38  0.05  
Huanghetu 23.43 65.1 11.5 0 Silt loam 23.64 0.42  0.14  
Huangzongrang 17.03 39.4 43.6 0 Loam 10.18 0.39  0.11  
Huichaotu 12.86 51.8 35.3 0 Silt loam 1.01 0.38  0.08  
Shuidaotu 16.46 71 12.5 0 Silt loam 24.57 0.41  0.11  
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Table 2. Generation of perturbations on model and observations for each ensemble member. 
 

Variables Error distribution  Mean Standard deviation Bound 

recipitation Gaussian, Multiplicative 1 0.2 (0, –) 
Max temp Gaussian, Additive 0 1.0 (℃) – 
Min temp Gaussian, Additive 0 1.0 (℃) – 
Predicted SM Gaussian, multiplicative 1 0.01  (0, –) 
Parameters  (SOL_AWC) Uniform distribution – – given in Section Parameter sensitivity 
Observed SM Gaussian, Additive 0 0.04 (m3/m3)  (0, –) 

 

Note: "Max", "Min" and "temp" means maximum, minimum, and temperature respectively.  
 
Gaussian additive noise with the standard deviation of 0.05 
mm/mm to ensure that the perturbed parameters stay in physi-
cal domain detailed in the Section of Parameter sensitivity. 
Besides, the error set for model inputs of the maximum and 
minimum temperatures and the model states are identical to that 
of the synthetic experiment. For the observation error, an upper 
bound of the rescaled ESA CCI SM error is firstly determined, 
and a scaling factor (SF) of 80% is firstly attempted (Alvarez-
Garreton et al., 2014). Similarly, the two schemes (EnKF_SP 
and EnKF_S) in the EnKF run are considered. In EnKF_SP 
both the parameters and SM in different depths are updated. 
However, in EnKF_S only the SM in different depths are up-
dated while the perturbed parameters with Gaussian distribution 
remains unchanged. 
 
RESULTS  
Parameter sensitivity analysis 

 
Theoretically, the assimilation is only effective when there is 

a strong correlation between the model states being updated and 
the observations being assimilated (Xie and Zhang, 2013). This 
principle is also appropriate for parameter estimation, which 
means that it is impossible to correct parameters that cause 
smaller scale errors in the predicted observation equivalent of 
the model states than can be observed (Smith, 2010). Therefore, 
it is crucial to evaluate the sensitivity of the given parameters to 
the measurement model predictions. Here, four parameters 
related to soil property and soil water routing processes are pre-
selected and described in Table 3. The sensitivity analysis of 
the four parameters to the surface SM is conducted based on the 
theory of Latin Hypercube (McKay et al., 1979) and One-
factor-At-a-Time (LH-OAT) sampling approach (Morris, 
1991). For each parameter, an ensemble of 100 members are 
sampled from its value range (Table 3) using a stratified sam-
pling method at the start of modeling. Other remaining parame-
ters are kept at their calibrated values. After running the model, 
the corresponding standard deviation (STD) of the surface SM 
for 100 members is calculated. The larger STD values (reflect 
the large ensemble spread) of the surface SM ensemble indi-
cates higher sensitivity of the corresponding parameter. Figure 
2 demonstrates the sensitivity results of the four parameters on 
HRU-1 as an example. It is clear that SOL_AWC is the most 
sensitive among the four parameters. The other three parameters 
only present certain sensitivity occasionally: the saturated hy-
draulic conductivity (Ksat) is sensitive only during rainy periods, 
 

while the soil evaporation compensation factor (ESCO) and the 
plant uptake compensation factor (EPCO) are only sensitive in 
dry periods. Therefore, only SOL_AWC is finally selected and 
will be updated in this study. When taking samples of 
SOL_AWC for doing the synthetic experiment or perturbing 
SOL_AWC for doing the real world test, we should ensure that 
the value falls within its physical domain. As SOL_AWC is the 
difference between field capacity Φfc and permanent wilting 
point Φwp, and Φfc is less than the total soil porosity Φpor, 
therefore, the physical domain of SOL_AWC should be betwe-
en zero and Φpor – Φwp, that is, (0, 0.33), (0,0.28), (0, 0.28), 
(0, 0.3) and (0, 0.3) for Cugutu, Huanghetu, Huangzongrang, 
Huichaotu and Shuidaotu, respectively, according to the values 
of Φpor and Φwp given in Table 1. 

 

 
 

Fig. 2. Variations of the catchment average precipitation (Prep) and 
the standard deviation (STD) of surface soil moisture (SM) for 
four parameters (Table 3) on HRU-1 from 1994-1-1 to 1995-12-31.  
(a) precipitation (b) SOL_AWC (c) Ksat (d) ESCO (e) EPCO.  
 
Results for the synthetic experiments  
Parameter and state estimation 

 
Figure 3 shows the assimilation process of SOL_AWC for 

the 5 types of soil in one experiment randomly chosen from the 
ten experiments. It is found that the SOL_AWC for 4 types of 
soil (except for Huichaotu, Figure 3(d)) can be accurately esti-
mated by assimilating the synthetic surface SM observations. 
 

Table 3. Parameters closely related to soil moisture in SWAT. 
 
Parameter  Units Description Value range 

SOL_AWC mm /mm 
Available water capacity of the soil, which is calculated by subtracting the fraction of 
water present at permanentwilting point from that present at field capacity  

(0.01, 1.0) 

Ksat mm/hour Saturated hydraulic conductivity (0.0, 250) 
ESCO – Soil evaporation compensation factor (0.01, 1.0) 
EPCO – Plant uptake compensation factor (0.01, 1.0) 
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Fig. 3. Estimation of the parameter SOL_AWC for the 5 types of 
soil from 2006-1-1 to 2008-12-31 by assimilating the synthetic 
surface soil moisture observations. (a) Cugutu (b) Huanghetu (c) 
Huangzongrang (d) Huichaotu (e) Shuidaotu. 

 
Although there is a bias (i.e., a difference between the ensemble 
mean and the synthetic truth) at the start of assimilation, after 
about 200 days at maximum, all the ensemble members of 
SOL_AWC converge to the truth and the ensemble mean 
matches the truth well. This indicates the significant capability 
of surface SM assimilation to eliminate parameter bias and 
improve the estimation of SOL_AWC. The non-convergence 
and underestimation of SOL_AWC for soil Huichaotu is partly 
caused by its little area proportion (1.01%) in the study basin. 
The change of SOL_AWC for Huichaotu cannot cause large 
difference in the surface SM modeling on subbasins, thus its 
estimation by assimilating the surface SM on subbasin scale 
contains certain difficulty. The results are similar for other nine 
experiments. 

Figure 4 provides the catchment area average SM of four 
layers (0–50 mm, 50–200 mm, 200–400 mm and 400–800 mm) 
from top to bottom in EnOL, EnKF_SP, EnKF_S and the syn-
thetic truth, which are obtained from the same experiment 
mentioned above. The SM estimated by EnKF_SP is signifi-
cantly improved compared with that by EnOL, especially for 
the upper two layers, as it significantly approaches the synthetic 
truth during the assimilation process. This can be illustrated 
from the decease of the root mean square error (RMSE) by 
EnKF_SP compared with that by EnOL (Table 4). Neverthe-
less, it seems that the effects of EnKF_SP on SM estimation 
show a decreasing trend with the increase of soil depth, which 
can be revealed from the decreasing degree of RMSE reduction 
in Table 4. This decreased efficiency is certainly influenced by 
the weak vertical coupling in SWAT model (Chen et al., 2011), 
which weakens the correlation between the surface SM and the 
SM in depths and deteriorates the SM update in deep layers in 
the assimilation. Besides, it can be seen in Figure 4 that the 
EnKF_S obtains similar performance on SM estimation to 
EnKF_SP, which indicates that the joint state-parameter update 
after 200 days does not make large difference to that with only 
state update on SM estimation. This is because the parameter 
SOL_AWC has gradually converged to stable values during the 
first 200 days by joint state-parameter update in EnKF_S. It 
makes the observations having little effect on the parameters 
after 200 days in EnKF_SP. Thus, the EnKF_S and EnKF_SP 
show similar influence on SM estimation. However, in terms of 
the RMSE in Table 4, the EnKF_S produces a little inferior 
impacts on the SM estimation of the fourth layer compared with 
that of the EnKF_SP (Table 4). This might relate to the lack  
of the possible temporal evolution of the model parameters in  

 
 

Fig. 4. The catchment area average soil moisture for the four layers 
from top to bottom estimated in the EnKF and EnOL from 2006-1-
1 to 2008-12-31. (a) the first layer (0–50 mm), (b) the second layer 
(50–200 mm), (c) the third layer (200–400 mm) and (d) the forth 
layer (400–800 mm).  

 
Table 4. RMSE of the catchment area average soil moisture ob-
tained by EnOL, EnKF_S and EnKF_SP in the synthetic experi-
ment (based on the data for the whole data assimilation period 
except for its first 200 days).  
 

RMSE (m3/m3) Layer 1 Layer 2 Layer 3 Layer 4 

EnOL 0.0323  0.0353  0.0125  0.0175  
EnKF_S 0.0025  0.0031  0.0021  0.0038  
EnKF_SP 0.0022  0.0032  0.0020  0.0029  

 

Note: Layer 1, Layer 2, Layer 3 and Layer 4 represent the first (0–50 mm), 
second (50–200 mm), third (200–400 mm) and the forth layer (400–
800 mm) respectively.  

 
EnKF_S as the parameters remain unchanged after 200 days 
(Moradkhani et al., 2005). 

 
Effectiveness of data assimilation on ainfall-runoff modeling 

 
The improvement of SM estimation can be expected to 

improve the rainfall-runoff simulation and prediction (Alvarez-
Garreton et al., 2014, 2015; Brocca et al., 2012). In order to 
analyze the performance of surface SM assimilation on rainfall-
runoff modelling, the normalized error reduction of RMSE 
(NER) is used: 

 

1 0 EnKF

EnOL

RMSE
NER .

RMSE
= −  (11) 

 
where RMSEEnKF and RMSEEnOL are the RMSE of the EnKF 
and EnOL mean based on the synthetic truth. The larger values 
of NER indicate the relatively better performance of EnKF. 

Figure 5 provides the NER of the ensemble average states 
and flux (Table 5) for the ten synthetic experiments. It can be 
seen that the total runoff at the catchment outlet (Vout) is consid-
erably improved by the EnKF_SP and EnKF_S in the soil 
moisture assimilation. It seems that the Vout obtained by 
EnKF_SP has a little better estimation than that by EnKF_S as 
it obtains a bit higher median value of NER. The improvement 
of the total runoff is contributed by the improvement of the three  
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Fig. 5. NER (equation 11) of the EnKF_S (red box) and EnKF_SP 
(black box) ensemble averaged variables (Table 5) for the ten 
synthetic experiments (based on the data for the whole data assimi-
lation period except for its first 200 days). The upper limb, lower 
limb and the red or black line in the box represent the upper quar-
tile (here, represented by h1), lower quartile (represented by h2) 
and the median value of NER for the ten experiments. The dotted 
line stretched from the box indicates the range of h1-1.5(h2-h1) 
and h2 +1.5(h2-h1), while the red “+” is the strange values beyond 
this range. 
 
different streamflow components including the surface runoff 
(Qsurf), lateral flow (Qlat) and ground water (Qgw), in which Qsurf 
and Qgw take the major part (about 80%) of the total runoff. The 
surface runoff improvement is caused by the improved SM on 
profile, which obtains a large degree of improvement by surface 
SM assimilation. The ground water primarily benefits from the 
improvement of the soil water recharge (wrchrg) to the shallow 
and deep aquifers. wrchrg is the only source of ground water, 
which is influenced by the improvement of the soil water distri-
bution on profile and the field water capacity (equation 2) that 
is controlled by SOL_AWC. Compared to the EnKF_SP, the 
worse and less robust performance of EnKF_S on ground water 
resulted from the bad performance of that on wrchrg, which also 
contribute the less significant improvement of the total runoff. 
This unsatisfactory performance of EnKF_S might be related to 
the fact that the parameter ensemble of SOL_AWC will not be 
propagated and corrected after 200 days, which might make the 
lack consideration of the possible temporal evolution of the 
model parameters in the model propagating process (Mo-
radkhani et al., 2005). Overall, the EnKF_SP outperforms the 
EnKF_S in both the improvement level and stability of the 
rainfall-runoff process by the surface soil moisture assimilation. 
This also indicates the importance of the joint state-parameter 
update in soil moisture assimilation. 
 
Results for the real world tests 
Model calibration and validation 

 
The model is calibrated using the daily runoff records from 

Jan 1, 2002 to Dec 31, 2005 observed at the basin outlet 
(Dapoling station, Figure 1). The parameter optimization is 
achieved by a combination of auto calibration using the Se-
quential Uncertainty Fitting (SUFI2) (Abbaspour et al., 2004) 
with the Nash-Sutcliffe coefficient of efficiency (NSE, 
 

 
 
Fig. 6. Validation of streamflow at Dapoling station from 2006-1-1 
to 2008-12-31. 

 

 
 
Fig. 7. The model simulated soil moisture and rescaled ESA CCI 
SM on catchment scale from 2006-1-1 to 2008-12-31. 

 
Nash and Sutcliffe, 1970) as the objective criteria and the man-
ual fine-tuning method. The NSE, the root mean square error 
(RMSE) and the relative error (RE = (1.0 – 
sum(SIM)/sum(OBS)) * 100%, where sum(SIM) and sum(OBS) 
represent the summarized value of the simulated and the ob-
served streamflow series for the whole calculation period sepa-
rately) at Dapoling station for the calibration period are 0.74, 
44.38 m3/s and 2.43% respectively. Figure 6 shows the valida-
tion of streamflow at Dapoling station from Jan 1, 2006 to 
Dec 31, 2008. The NSE, RMSE and RE are 0.78, 31.3 m3/s and 
–0.03% respectively for this period. The model simulated soil 
moisture and the rescaled ESA CCI SM on the basin in this 
validation period are present in Figure 7. It can be seen that the 
model simulated soil moisture varies more frequently than that 
of the ESA CCI SM. The Pearson's correlation coefficient 
between them is 0.56. 
 
Parameter estimation and validation 

 
Figure 8 presents the SOL_AWC for 5 types of soil by as-

similating the combined ESA CCI SM products from Jan 1, 
2006 to Dec 31, 2007 in EnKF_SP. After about 200 days, the 
ensemble trajectories are nearly stable with little variations, and 
the ensemble samples can be approximated by a Gaussian dis-
tribution with a small standard deviation (STD). This indicates 
that the uncertainty of the parameter estimation can be de-
creased with the joint state-parameter update in EnKF_SP. The 
relatively stable ensemble trajectory and the little ensemble spread 

 

 

Table 5. The variables in SWAT model marking the rainfall-runoff process. 
 

Variables Units Description 
SWly mm Watershed average soil water content in layer ly on a given day 
SW mm Watershed average profile soil water content on a given day 
Qsurf mm Amount of surface runoff discharged to the main channel on a given day 
Qlat mm Amount of lateral flow discharged to the main channel on a given day 
wrchrg mm Amount of water entering both shallow and deep aquifers on a given day 
Qgw mm Amount of ground water flow discharged to the main channel on a given day 
Vout m3/s The volume of water flowing out of the channel during a time step 
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Fig. 8. Estimation of the parameter SOL_AWC for the 5 types of soil from 2006-1-1 to 2007-12-31 by assimilating the combined ESA CCI 
SM. The histograms in each plot, fitted with the Gaussian distribution function, represent the distribution of the ensemble members at three 
time steps (i.e. 1st, 200th and 730th day). (a) Cugutu (b) Huanghetu (c) Huangzongrang (d) Huichaotu (e) Shuidaotu. 
 

 

 
 
Fig. 9. The predicted streamflow using different parameter sets 
from 2008-1-1 to 2008-12-31. 
 
(reflected by the STD of the parameter ensemble) imply the 
potential that the SOL_AWC can be estimated probably by 
assimilating the combined ESA CCI SM. However, it is not 
sure whether the SOL_AWC is appropriately estimated, be-
cause we cannot obtain its the true value. Here, we attempt to 
use the streamflow measurements at the catchment outlet for 
parameter validation. We perform a single run of SWAT model 
from Jan 1, to Dec 31, 2008, using the parameter estimates 
from EnKF_SP, and evaluate the predicted streamflow against 
the observed streamflow at the basin outlet (Dapoling station). 
Besides, the streamflow in the control run, i.e. the simulated 
streamflow using the prior calibrated parameters in the section 
of Model calibration and Validation, is adopted as a compari-
son. Figure 9 shows the predicted streamflow based on the 
above two parameter sets, the EnKF_SP calibrated parameter 
(marked by EnKF_SP) and the prior calibrated parameter 
(marked by SIM). It can be seen that the high flow obtained by 
the EnKF_SP calibrated parameters is considerably improved 
compared to the streamflow in control run (e.g., the day around  

 

 
 

Fig. 10. Contour plot of the RMSE for the outlet streamflow esti-
mated by EnKF_SP and EnKF_S from Jan 1, 2006 to Dec 31, 
2008, as a function of the standard deviation (STD) of the multipli-
cative Gaussian perturbations to the precipitation (σp), the STD of 
the Gaussian perturbations on SOL_AWC (σpar), and the scaling 
factor (SF) to the upper bound of the observation error for the 
rescaled ESA CCI SM.  
 
110). However, the improvement was not obtained for the low 
flow. Simulated streamflow become even worse for some periods 
(e.g., the day over 300). For the whole period, the streamflow by 
EnKF_SP only obtains a slight improvement, as the RMSE is 
decreased from 39.80 to 39.72 m3/s and the NSE increased 
from 0.77 to 0.78. Although this improvement is not signifi-
cant, it still shows the capability of the satellite soil moisture 
assimilation in parameter optimization. 
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Sensitivity of the model and observation error 
 
Figure 10 shows the root mean square error (RMSE) of the 

outlet streamflow obtained by EnKF_SP and EnKF_S with 
varying standard deviation (STD) of the Gaussian multiplicative 
perturbations on precipitation (σp) from 0.1 to 0.5 along with 
the varying STD of the Gaussian additive perturbations on 
parameter SOL_AWC (σpar) from 0.01 to 0.05 mm/mm. At the 
same time, the scaling factors (SF) to the upper bound (0.067, 
0.066, 0.070 and 0.065 m3/m3 for the four remote sensing grids 
covering the basin) of the observation error for the rescaled 
ESA CCI SM are considered at 50% and 80%, while the error 
of the model inputs for the maximum and minimum temperature 
and the model states (soil moisture in different depths) remain 
unchanged at 1.0℃ and 0.01 respectively. Figures 10 (a) and (c) 
show that, in terms of the RMSE for the outlet streamflow, the 
performance of EnKF_SP is sensitive to both the error of 
SOL_AWC (σpar) and the precipitation input (σp). The optimal 
performance of EnKF_SP falls in different domain of σp and 
σpar with different observation errors (i.e. 50% and 80% of SF). 
Note that the RMSE of the simulated streamflow in the control 
run is 31.3 m3/s (see the section of Model calibration and 
Validation). The good impacts of EnKF_SP on streamflow 
modeling can be obtained when σpar is around 0.02 and σp being 
limited within 0.43 under the case that SF kept at 50% (Figure 
10 (a)), and when SF equals 80%, the optimal σpar and σp are 
around 0.03 and 0.4 respectively (Figure 10 (c)). Figures 10 (b) 
and (d) show that, the EnKF_S performance is sensitive to the 
magnitude of the parameter perturbation (σpar). With the  
increase of σpar, the performance of EnKF_S on streamflow 
modeling becomes worse. The EnKF_S will produce negative 
influence on the streamflow modeling once σpar exceeds 0.02 
when SF is kept at 50% (Figure 10(b)), and the EnKF_S effects 
will be negative once σpar exceeds 0.01 when SF is kept at 80% 
(Figure 10(d)). The bad performance of EnKF_S is due to the 
overfitting of the model simulated soil moisture (SM) to that of 
the satellite soil moisture, as the large perturbation to 
SOL_AWC will lead to large ensemble spread of the predicted 
SM. That in turn results in large forecast error covariance 
between the model predicted SM and the measurement 
predictions, which makes very large (or unreasonable) SM 
updates in the assimilation process. The different sensitivity of 
the EnKF_SP and EnKF_S performance to the model and 
observation error parameters indicate the capability of the 
remote sensing SM on parameter estimation. Overall, the 
EnKF_SP and EnKF_S have the capability to improve the 
streamflow modeling by assimilating the combined ESA CCI 
SM although the optimal model and observation error 
parameters for them are quite different. This also indicates the 
significance of an appropriate error assumption/quantification 
on the model and observations in satellite soil moisture 
assimilation. 

 
DISCUSSION AND CONCLUSIONS 

 
The impact of surface soil moisture assimilation on the esti-

mation of both model parameters and model states (soil mois-
ture in different depths) are investigated in SWAT model using 
the ensemble Kalman filter (EnKF) method. The investigation 
is based on a series of synthetic experiments and a real world 
test using the combined ESA CCI SM product in the upper 
Huai River basin. The following two schemes are considered in 
EnKF: (1) both the model parameter and soil moisture in differ-
ent depths are updated simultaneously by assimilating the sur-
face soil moisture (EnKF_SP), (2) only the soil moisture in 

different depths are updated by assimilating the surface soil 
moisture (EnKF_S). 

In the synthetic experiments, the results of EnKF_SP indi-
cate that the surface soil moisture assimilation with joint state-
parameter update has significant capability to improve the 
estimation of parameter SOL_AWC (the available soil water 
capacity) and soil moisture itself in different depths, even 
though this improvement is decreasing with the increase of soil 
depth. For EnKF_S, the surface soil moisture assimilation with 
only state update with unbiased parameters (the parameter bias 
is removed by joint parameter-state update for the first 200 
days) also obtains satisfactory SM estimation in different 
depths on soil profile. The less significant influence of EnKF_S 
on the SM estimation of the fourth layer might be related to the 
lack of consideration for the possible temporal evolution of the 
parameters in EnKF_S as the parameters remain unchanged 
after 200 days in the EnKF_S based data assimilation process. 
In terms of the impact of surface soil moisture assimilation on 
the rainfall-runoff process, the performance of EnKF_SP is 
relatively better and robust than that of the EnKF_S, especially 
for the ground water. This also indicates the importance of both 
state and parameter update on the improvement of hydrological 
modeling in soil moisture assimilation. 

In the real world tests, the assimilation of the combined ESA 
CCI SM by EnKF_SP shows that it has considerable capability 
in the estimation of parameter SOL_AWC. The uncertainty of 
SOL_AWC (represented by the standard deviation of the pa-
rameter ensemble) is largely decreased and the ensemble trajec-
tory remains stable after assimilating the satellite soil moisture 
for about 200 days. Moreover, the predicted steamflow using 
the parameters from EnKF_SP is slightly better than that from 
the prior calibration, which also reflects the capability of the 
satellite soil moisture in parameter optimization. The sensitivity 
analysis of the EnKF_SP and EnKF_S performance on stream-
flow modeling to the model and observation errors shows that 
both of them have the capability to improve the streamflow 
modeling by assimilating the combined ESA CCI SM although 
the optimal model and observation error parameters for them 
are quite different. However, the improvement of streamflow 
modeling by EnKF_SP and EnKF_S in the combined ESA CCI 
SM assimilation is not significant in this study. This result can 
be analyzed from the following three aspects: (1) The underly-
ing conditions of the study catchment might influence the use-
fulness of the combined ESA CCI SM product. The dominant 
land cover of this basin is rice (56%), which is usually wet and 
with high density of vegetation cover. This will deteriorate the 
data quality of the satellite soil moisture retrievals. Besides, the 
mountainous region takes about 30% in this basin, of which the 
undulating terrain might also produce bad influence on the 
utility of the remote sensing data. Also, Brocca et al. (2013) did 
not find significant improvement in the mountainous region by 
assimilating different soil moisture products into rainfall-runoff 
modeling using a simple nudging scheme. (2) The spatial  
mismatch between the satellite soil moisture and the model 
simulated soil moisture might influence the assimilation per-
formance. The grid-based ESA CCI SM has a spatial resolution 
of about 25 km, which is much larger than that of the model 
simulated soil moisture. The coarse spatial resolution of the soil 
moisture observation might weaken its sensitivity to the chang-
es of hydrological modeling, thus influence its assimilation 
performance. (3) The simplification on the model and observa-
tion error assumption might affect the optimality of the assimi-
lation scheme. The model error is assumed a Gaussian additive 
or multiplicative distribution, and the spatial and temporal 
correlations of the error (e.g., the model input error for precipi-
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tations) are not considered. Besides, the non-stationary error 
characteristics for the satellite soil moisture are also ignored in 
this study. Therefore, based on the knowledge that the surface 
soil moisture assimilation has the capability to improve the 
state and parameter estimates, a lot of future work needs to be 
done to improve the data quality of the satellite soil moisture 
products and their utilization by optimizing the data assimila-
tion scheme to improve the rainfall-runoff modeling. 
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NOMENCLATURE 
 
SWAT Soil and Water Assessment Tool 
EnKF the ensemble Kalman filter method 
SM soil moisture 
ESA CCI 
SM 

the soil moisture products in the Climate Change 
Initiative projects by the European Space Agency 

HRU Hydrological Response Units 
STD standard deviation 
EnOL open loop 
EnKF_S EnKF with only state update 
EnKF_SP EnKF with joint state-parameter update 
SIM simulation 
OBS observation 
ESCO soil evaporation compensation factor 
EPCO plant evaporation compensation factor 
Ksat saturated hydraulic conductivity 
SOL_AWC available soil water capacity 
Φwp fraction of water content at wilting point 
Φfc 
FC 

fraction of water content at field capacity 
field water capacity 

Φpor total soil porosity 
RMSE root mean square error 
NER normalized reduction of the root mean square 

error 
RE relative error 
NSE Nash and Sutcliffe coefficient 
σp standard deviation of the Gaussian multiplicative 

perturbation on precipitation 
σpar standard deviation of the Gaussian additive  

perturbation on parameters  
SF scaling factor to the upper bound of the soil 

moisture observation error 
Vout streamflow at the basin outlet 
Qsurf surface runoff 
Qlat lateral flow 
Qgw ground water  
wrchrg water recharge to the shallow and deep aquifer 

from the bottom of soil profile 
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