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Abstract: Subtropical regions have clay-rich, weathered soils, and long dry periods followed by intense rainfall that pro-
duces large fluctuations in soil water content (SWC) and hydrological behavior. This complicates predictions of spatio-
temporal dynamics, as datasets are typically collected at too coarse resolution and observations often represent a duration 
that is too short to capture temporal stability. The aim of the present study was to gain further insights into the role of 
temporal sampling scale on the observed temporal stability features of SWC order to aid the design of optimal SWC 
sampling strategies. This focused on both sampling frequency and total monitoring duration, as previous analyses have 
not considered both of these sampling aspects simultaneously. We collected relatively high resolution data of SWC (fort-
nightly over 3.5 years) for various soil depths and under contrasting crops (peanuts and citrus) at the red soil region of 
southeast China. The dataset was split into a three-year training period and a six-month evaluation period. Altogether 13 
sampling frequencies (intervals ranging from 15 to 240 days) and eight monitoring duration periods (between three and 
36 months) were derived from the training period to identify temporal stability features and the most time stable location 
(MTSL). The prediction accuracies of these MTSLs were tested using the independent evaluation data. Results showed 
that vegetation type did affect the spatio-temporal patterns of SWC, whereby the citrus site exhibited a stronger temporal 
variation and weaker temporal stability than the peanut site. However, the effects of both sampling frequency and obser-
vation duration were more pronounced, irrespective of the role of vegetation type or soil depth. With increasing sampling 
interval or decreasing monitoring duration, temporal stability of SWC was generally overestimated; by less than 10% 
when sampling interval increased from every 15 to 240 days and by up to 40% with duration decreasing from 36 to 3 
months. Our results suggest that sampling strategies and trade-offs between sampling interval and duration should focus 
on capturing the main variability in hydro-climatological conditions. For subtropical conditions, we found that sampling 
once every 45 days over 24 months to be the minimum sampling strategy to ensure errors in SWC temporal stability of 
less than 10%. 
 
Keywords: Sampling strategy; Subtropical climate; Temporal stability; Vegetation type; Soil moisture prediction. 
 

Abbreviations: ARE: Absolute value of relative error; CVT: Coefficient of variation over time; MRD: Mean relative  
difference; MTSL: Most time stable location; RD: Relative difference; RE: Relative error; SDRD: Standard deviation of 
relative difference; SWC: Soil water content. 
 

INTRODUCTION 
 
Soil water content (SWC) exerts important controls on 

evapotranspiration and runoff generation processes (e.g. Boulet 
et al., 2015). It is a key state variable to many eco-hydrological 
models (Brandyk et al., 2016). In turn, SWC is a function of 
many factors, including soil texture, land use (including vegeta-
tion), soil depth, topography and climate (Canton et al., 2016), 
which leads to strong and nonlinear spatio-temporal variations 
in SWC dynamics (Buttafuoco et al., 2005). 

Capturing such SWC patterns is therefore complex and chal-
lenging (Gao et al., 2016a), hence many studies seek to replace 
extensive SWC measurements with less labor-intensive ap-
proaches (e.g. Burns et al., 2016; Korres et al., 2015; Martini et 
al., 2015; Stockinger et al., 2014). Some efforts involve explor-
ing novel sensing methodologies (e.g. via remote sensing or 
cosmic ray sensors (e.g. Zreda et al., 2012)) which integrate 
small scale heterogeneity and offer new insights into larger 
scale moisture dynamics. On the other hand, there is a need to 
increase efficiency of traditional point scale measurements, 
which still provide more accurate measurements locally than 

novel sensing methodologies. One common methodology to 
reduce those monitoring efforts is referred to as temporal stabil-
ity, first put forward by Vachaud et al. (1985). It reflects the 
persistence of a spatial pattern of soil moisture in an area over 
time, which has been applied in many environments, ranging 
from humid (Gao et al., 2015b) to arid areas (Shen et al., 2016), 
and from forest (Korres et al., 2015) to agriculture ecosystems 
(Rivera et al., 2014). 

The concept of temporal stability of SWC is widely used for 
various research and application purposes, for example to vali-
date remotely sensed data (Cosh et al., 2006), optimize moni-
toring schemes (Brocca et al., 2010), fill in missing values 
(Dumedah and Coulibaly, 2011), assimilate data (Pan et al., 
2012), estimate spatial mean SWCs (Biswas, 2014), predict 
spatial distribution (Hu and Si, 2016), upscale from surface to 
profile scale (Gao et al., 2016b), downscale from field to plot 
scale (Nasta et al., 2018), and improve the space-time resolu-
tion of data (Zhu et al., 2017). The performance of these appli-
cations typically depends on the strength of temporal stability. 
It has been recognized that the sampling frequency (or interval) 
and the duration of the monitoring period are important compo-
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nents that affect the “apparent” features of temporal stability 
(Martínez et al., 2014; Vanderlinden et al., 2012). 

Owing to variations in study aims and objectives, studies on 
temporal stability of SWC have used data which were collected 
at different sampling intervals, e.g. ranging from every 10 min 
(Guber et al., 2008), to daily (Heathman et al., 2009) to more 
than monthly (Wang et al., 2015b) and over different length of 
monitoring periods, e.g. ranging from approximately one month 
(Cosh et al., 2004) to one year (Li et al., 2016) to 10 years (Liu 
and Shao, 2014). This is a limiting factor to the generalization 
of the temporal stability application (Wang et al., 2015a), e.g. 
as it inhibits wider interpretations from individual studies. So 
far, those studies that considered the impact of sampling fre-
quency did not find significant differences in temporal stability 
characteristics derived from data with sampling interval differ-
ences in the order of a few hours (Cosh et al., 2006), a few days 
(Guber et al., 2008) or one month (Martínez et al., 2014). How-
ever, the temporal stability index of each investigated frequen-
cy used in these studies was generally presented as the mean of 
all sub-datasets (e.g. Rivera et al., 2014), which mainly reflects 
the errors related to scale effects and ignores the uncertainties 
from a single sampling. Though the study of Cosh et al. (2006) 
compared the differences of temporal stability characteristics of 
different sampling intervals using single sampling strategy, the 
ranges of frequencies invested were limited, i.e. within 24 
hours. In practice, however, single sampling at a specific inter-
val, monthly or longer, is typically applied as a most cost-
effective strategy, and these results may be more affected by 
temporal sampling frequency than considering the mean of all 
sub-datasets (Hu et al., 2012). 

Although the spatial pattern of SWC is generally time-stable, 
the “apparent” temporal stability strength could be affected by 
the span of the sampling period, as suggested by Vanderlinden 
et al. (2012). A few studies explored this issue but found incon-
sistent or even contradictory results. For example, Cosh et al. 
(2006) reported that the temporal stability of SWC was similar 
among four seasons and a whole year in the Washita watershed, 
southwestern Oklahoma. However, for an area in central Sas-
katchewan, Canada, Biswas and Si (2011) found that temporal 
stability with the same season was much stronger than between 
different seasons. Furthermore, for a site on the Loess Plateau, 
China, Liu and Shao (2014) found that the relationships be-
tween temporal stability and the duration of sampling period 
depended on the type of the vegetation based on a 10-year 
study period. These inconsistent results could be associated 
with different strengths of seasonal hydro-climatological varia-
bility mainly caused by the differences in climate, soil proper-
ties as well as vegetation type, as suggested by Martínez et al. 
(2014) and Wang et al. (2015a). It appears that such differences 
would be particularly evident in hydroclimatic regions where 
seasonal variability is extreme, such as tropical climates where 
long dry periods are followed by intense periods of rainfall. 

Vegetation type and soil depth have been proven to be im-
portant factors that influence the temporal stability of SWC. 
Generally, vegetation activity appears to weaken the temporal 
stability of SWC (e.g. Cassel et al., 2000; Wang et al., 2015a), 
while the temporal stability typically increases with soil depth 
(e.g. Choi and Jacobs, 2007). Nevertheless, whether the influ-
ences of sampling strategy on temporal stability of SWC vary 
with vegetation types and soil depth in such areas with strong 
seasonal hydro-climatological variability is still unclear. 

This study aims to gain further insights into the role of tem-
poral sampling scales on the observed temporal stability of soil 
moisture. More specifically, the temporal sampling scales refers 
to the balance of how often in time and for how long a monitor-

ing period in total. To explore these impacts under relatively 
extreme hydroclimatic conditions of the tropics, we investigate 
these at agricultural sites of the Chinese red soil region where 
strong climatic variability drives a highly dynamic soil moisture 
regime. Red soil is also an important resource of China and 
covers an area of 2.18 million km2. Seasonal drought from July 
to September is a big challenge faced in this region with regard 
to the productivity of crops (Zhao et al., 2012). In addition, the 
temporal stability concept has been proven to be an effective 
tool to improve agricultural water management in this region by 
providing precise SWC information (Gao et al., 2015b and 
2016a). Optimizing sampling strategies is important so that 
temporal stability can be effectively characterized in this region. 

The specific objectives were to 1) identify spatio-temporal 
patterns of SWC for two contrasting cropping practices at four 
soil layers in an agricultural landscape of the Chinese Red soil 
region; 2) for these different sites, evaluate the role of sampling 
frequency (i.e. the interval between sampling occasions) and 
the duration of the monitoring period on temporal stability 
features and mean SWC prediction and 3) based on the out-
comes of (1) and (2), explore potential applications to inform 
temporal sampling strategies for similar temporal stability 
studies. 
 
MATERIALS AND METHODS   
Study area 

 
SWC data were collected in the Sunjia agricultural catch-

ment (116°53′58″ – 116°54′28″E, 28°13′45″ – 28°14′12″N), a 
recognized Critical Zone Observatory located in Yingtan, 
Jiangxi province, China (Fig. 1). The area has a typically warm 
and humid subtropical monsoon climate. Mean annual precipi-
tation is ~1800 mm and annual potential evapotranspiration is 
~1200 mm. There is a strong climatic seasonality with a distinct 
dry (July to September) and wet (April to June) season. The dry 
season receives less than 20% of annual rainfall, while potential 
evapotranspiration rates amount to more than 45% of the annu-
al total. In contrast, more than 50% of the annual precipitation 
occurs during the wet season (Zhao et al., 2012). 

The dominant crop types for upland at Sunjia are peanut 
(Arachis hypogaea) and citrus (Citrus reticulata), which have 
distinctly different patterns in root water absorption (Tahir et 
al., 2016). Cultivation histories of the two vegetation types are 
approximately 25 years, both of which replaced tea plantations 
(Camellia sinensis) in the early 1990s. The growing seasons for 
peanut is from April to August and for citrus from April to 
October. Unlike rice fields in the region, both peanut and citrus 
do not receive any irrigation water. 

Soils at the study site were derived from Quaternary red 
clays and are classified as Ultisols based on the USDA Soil 
Taxonomy classification system (Soil Survey Staff, 2010). 
Although the overall soil classification is similar, there are 
differences in the soil physical properties associated with the 
two vegetation types. Key differences include a higher clay 
content and soil organic carbon content for soils at the citrus 
site than those at the peanut site (Table 1). In addition, the 
saturated hydraulic conductivity of soils under peanut is up to 
an order of magnitude higher than under citrus at surface 20 cm 
soil layer (Table 1). This can be associated with the different 
soil management practices (i.e. tillage) for peanut and citrus. 
 
Data collection                                            

 
Nine monitoring locations with an approximate spacing of 

15 m in a transect along the slope were chosen for each vegeta-  
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Table 1. Soil properties of different soil layers within 0–100 cm for peanut and citrus sites. 
 

Vegetation 
type 

depth 
cm 

Sand 
      % 

Silt 
% 

Clay 
 % 

BD* 
g/cm3 

SOC* 
g/kg 

KS* 
cm/day

 
 
Peanut 

0–20 38.4±9.3 27.5±4.3 34.1±5.4 1.34±0.12 10.7±3.0 162.7±104.1 
20–40 35.1±10.0 28.6±4.1 36.3±7.4 1.41±0.09 5.3±1.4 16.2±27.6 
40–60 36.3±7.8 27.1±3.2 36.7±5.9 1.40±0.11 4.0±0.7 16.4±15.6 
60–80 34.7±7.8 27.3±3.1 38.0±6.2 1.38±0.12 3.7±0.9 13.8±18.1 

80–100 33.6±7.0 27.2±3.6 39.2±5.5 1.42±0.09 3.2±0.7 9.6±9.1 
    
 
 
Citrus 

0–20 41.3±4.3 24.9±2.1 33.8±3.1 1.38±0.08 13.6±2.6 18.8±12.5 
20–40 35.9±6.0 25.1±2.2 39.0±4.7 1.42±0.06 5.7±1.4 4.0±2.9 
40–60 33.5±2.9 24.4±1.6 42.1±4.0 1.45±0.11 3.6±0.5 5.7±8.0 
60–80 33.8±5.0 26.0±4.8 40.2±5.7 1.41±0.06 3.2±0.6 8.8±7.2 

80–100 34.7±4.1 24.5±5.5 40.8±8.2 1.45±0.08 2.7±0.4 10.4±12.8 
 

*BD = bulk density; SOC = soil organic carbon; KS = soil saturated hydraulic conductivity. All the values were the mean values of nine locations by arithme-
tic method. 
 

 
 
Fig. 1. Location of the studied slope (a) and spatial distribution of monitoring locations across the slope (b) for peanut (c) and citrus (d) sites. 

 
tion type to measure SWC (see Fig. 1). To eliminate possible 
influences from topography and climate, the two transects were 
nearly parallel along the same slope with peanut and citrus, 
respectively. The topography of the two transects was similar, 
with a slope length of approximately 150 m and the elevation 
ranging from 44 to 50 m (Fig. 1). Soil layer thickness for both 
transects varied between approximately 5.0 m and 6.5 m de-
pending on slope position. A 2-m polyvinyl chloride access 
tube with a diameter of 5 cm was installed at each location in 
early 2013. Each tube was capped at the bottom with a water-
tight seal, and a removable cap was placed on top to prevent 
water entering the tube. 

The volumetric SWC was measured using a size-matched 
portable TDR TRIME-PICO-IPH probe, with the length of 18 
cm, measuring accuracy of 2% and repeat accuracy 0.3%  

(IMKO, Ettlingen, Germany). Since properties of the studied 
soil were within those ranges tested and calibrated by the manu-
facturer, we initially used the factory-set calibration curve to 
translate the dielectric constant of the soil into SWC. In addi-
tion, to avoid drifts in the data of this portable probe, its  
consistency was checked via a calibration in dry and water-
covered glass beads (the depth of water film lower than 2mm) 
every two months (see also Zhu et al., 2017). This involved the 
standard procedure recommended in the user manual. From 
July 2013 to December 2016, with an approximate time interval 
of 15 days, SWC was collected at 20 cm intervals to a depth of 
160 cm on 79 occasions. For the purpose of this study, at each 
sampling date, the collected SWCs were transferred to mean 
values for layers of 0–40, 40–80, 80–120, and 120–160 cm soil 
depth. 
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Data analysis 
 

First, the 3.5-year dataset was used to identify general tem-
poral variations and temporal stability of SWC in the study 
area. Next, to test the impacts of the sampling strategy on the 
behavior of temporal stability, the full dataset was split into a 
training period (from July, 2013 to June, 2016) and evaluation 
period (from July to December, 2016). A range of sampling 
frequencies (varying intervals between sampling occasions) and 
periods (varying total duration of the monitoring period) were 
obtained from the training period by re-sampling analysis. For 
each sampling strategy, temporal stability analysis was per-
formed to obtain the temporal stability index and identify the 
MTSL. The evaluation period was used to evaluate the predic-
tion accuracy based on the identified MTSLs. 
 
Re-sampling analysis 

 
The dataset of the 36 months training period was re-sampled 

for 13 sampling intervals (once every 15, 30, 45, 60, 75, 90, 
105, 120, 135, 150, 180, 210 and 240 days) and eight sampling 
duration periods (36, 30, 24, 18, 12, 9, 6, and 3 months). All of 
the possible sub-datasets for each sampling strategy were ob-
tained to cover the whole training period. The aim of getting all 
the possible sub-datasets was to separate the changes of tem-
poral stability caused by the temporal uncertainty of SWC and 
by temporal sampling scale itself. 

The number of sub-datasets for each sampling interval was 
determined by its value divided by the shortest sampling inter-
val (i.e. 15 days). For example, for the sampling strategy with 
120-day sampling interval, the number of the sub-dataset was 
eight (i.e. 120 by 15). The approach to obtain the eight sub-
datasets is that beginning from eight different dates (from the 
first, second and until the eighth date) with the same sampling 
interval of 120 days (see Fig. 2a). 

Similarly, the number of the sub-datasets for each sampling 
period duration was calculated based on the longest period (i.e. 
36 months) and the period of the sub-dataset. For example, the 
number of the sub-datasets for a 6-month sampling period is 
calculated from 36 months by six months. The six sub-datasets 
were obtained beginning from the first, seventh, 13th until 31st 
month with 6-month duration (see Fig. 2b). 
 
Temporal stability analysis 

 
Relative difference analysis was used to evaluate the tem-

poral stability of SWC with the mean relative difference  
 

(MRD) and standard deviation of relative difference (SDRD) 
indices. Relative difference (RD) is the difference between an 
individual measurement of SWC at location i time j,  

( )jSWC i , and the mean SWC, jSWC  of the same time. It 
provides an estimation of the unbiased difference between 
them: 

 

( )
( ) j j

j
j

SWC i SWC
RD i

SWC
−

=       (1) 

where 

1

1 ( )
N

j j
i

SWC SWC i
N =

=       (2) 
 
N is the number of measurement locations (N = 9 in the present 
study). 

Temporal mean RD and its standard deviation at location i, 
( )MRD i  and ( )SDRD i  are defined as: 

 

1

1( ) ( )
m

j
j

MRD i RD i
m =

=       (3) 

and 

2

1

1( ) ( ( ) ( ))
1

m

j
j

SDRD i RD i MRD i
m =

= −
−       (4) 

 
for which m is the number of measurement occasions, totaling 
67 for the training period and 79 for the whole study period. 
The MRD and SDRD represent the bias and the precision of the 
location when used for predicting the mean SWC, respectively. 
In this study, the location with the lowest SDRD values was 
chosen as the MTSL, which can be used to predict the mean 
SWC with an offset by the corresponding MRD value (Starks et 
al., 2006): 
 

( )
1 ( )

j
j

SWC i
SWC

MRD i
=

+
         (5) 

 

Here, we could not obtain the true value of the temporal sta-
bility index from the field data. One alternative to overcome 
this is to employ the dataset with the longest sampling period 
and the shortest sampling interval for temporal stability analy-
sis. As such, the temporal stability index (i.e. SDRD) of the full 
dataset (i.e. 15-day sampling interval over 36 months) was here 
considered as the “true value”, while the SDRD of any of the  
 

 
 

Fig. 2 Example diagrams of sampling strategies explored in the present study, showing the structure of 120 days as an example for sam-
pling intervals (a) and 6 months for sampling periods (b). For (a): the sampling occasions with the same number belong to the same sub-
dataset; numbers 1–8 represent the eight sub-datasets and x are occasions for which no data were available. For (b): numbers 1–6 represent 
the six sub-datasets with the same sampling interval of 15 days (not shown in the schematic). 

2013 2016 2014 2015 



Lei Gao, Yaji Wang, Josie Geris, Paul D. Hallett, Xinhua Peng 

264 

 

sub-sets was the “apparent” value (cf., Rivera et al., 2014; 
Western and Blöschl, 1999). The scale effect on temporal sta-
bility was reflected by the deviation of mean SDRD values of 
all sub-datasets to the “true value” for each sampling strategy.  

The error introduced by a single sampling related to neglect-
ing of inner variations, considered as the “uncertainty” here, 
was reflected by the maximum deviation in all the sub-datasets. 
Using the dataset of the evaluation period, the prediction accu-
racy was assessed by the deviation between the observed and 
predicted mean SWCs. The deviations between “apparent” 
SDRD and its “true value” and between the predicted mean 
SWC and observed SWC were expressed by the index of rela-
tive error (RE) and the related maximum RE (Max-RE), abso-
lute value of relative error (ARE) and its mean and maximum, 
Mean-ARE and Max-ARE. 

 
RESULTS 
Spatio-temporal patterns in soil water content (SWC) 

 
Dynamics of spatial mean SWC (nine locations along the 

slope for each vegetation type) during the full study period 
(from July 2013 to December 2016) suggested that both vegeta-
tion type and soil depth affected the temporal variation of SWC 
(Fig. 3). Overall, temporal variations of SWC for citrus were 
stronger than for peanut. This is evident across the full depth 
range, where the coefficients of variation over time (CVT) were 
consistently higher for citrus than for peanut (Table 2). It was 
also found that the differences of the variation between the two 
vegetation types were larger for deeper soil depths than shallow 
ones (Table 2). 

The temporal stability of SWC, denoted by SDRD, was 
stronger for peanut than citrus at all four soil layers (Table 2). 
The location of the MTSLs, identified by the lowest SDRD 
values, varied with depth for both peanut and citrus. For exam-
ple, the MTSLs for peanut were at P6 for the 0–40 cm depth, 
while at P3 for the other three depth ranges. For citrus, these 
locations were P7 and P1, respectively (Table 2). 
 
Influences of temporal sampling strategies on temporal 
stability of SWC 

 
In general, sampling frequency affected the averaged SDRD 

values only slightly (Fig. 4). Compared to the “true value”, the 
relative errors (REs) of 91 out of 104 cases (13 sampling inter-
vals at four soil layers for two vegetation types in total) were 
lower than 5% (RE values not shown in Figure 4). This was the 
case for all sampling interval increases from every 15 days up 
to 150 days. However, when the sampling interval was longer 
than once every 150 days, the SDRD was increasingly underes-
timated. Accordingly, the largest ARE (12.7%) was derived for 
the longest sampling interval (i.e. 240-days). 

The maximum REs (Max-REs) of sampling strategies in-
creased largely with longer sampling intervals. This was inde- 
 

 
 

Fig. 3. Temporal dynamics of rainfall (a) and spatial mean soil 
water content (SWC) from July, 2013 to December, 2016 for pea-
nut (b) and citrus sites (c) at 0–40, 40–80, 80–120, and 120–160 
cm soil layers. 
 
pendent of depth where all the errors over 50% occurred for the 
longest sampling interval (i.e. once every 240 days) for all the 
four soil depth ranges (Fig. 4). When the sampling interval was 
shorter than 60 days (i.e. every 15, 30, and 45 days), correspond-
ing Max-REs were less than 10% (Fig. 4). However, for some 
cases, such as 40–80 and 80–120 cm for the peanut site, the 
Max-REs were even less than 10% when sampling intervals 
were 90 days or less (Fig. 4). Significant differences were found 
for the peanut site among four soil depths except for the 40–80 
vs. 80–120 cm soil layer (p < 0.05, t-test). For the citrus site, 
however, only the error of the 0–40 cm soil layer was signifi-
cantly less than those of the 80–120 and 120–160 cm soil layers. 

Changes of averaged SDRD values with the sampling period 
increasing from 3 months to 36 months could be divided into 
two stages: slight fluctuations for a sampling duration >12 
month, but a fast increase when duration changed from 3 to 12 
months. For durations >12 months, the AREs for SDRD were 
generally less than 10% for both peanut and citrus (Fig. 5). 
However, AREs rose sharply to more than 30% for sampling 
durations <12 months (Fig. 5). The generally negative errors  
 

Table 2. Statistics of soil water content (SWC) from July, 2013 to December, 2016 of temporal mean values, temporal coefficient of varia-
tion (CVT), mean standard deviation of relative difference (SDRD), most temporal stability location (MTSL) based on the method with the 
lowest SDRD values at 0–40, 40–80, 80–120, and 120–160 cm soil layers for peanut and citrus sites. 
 

Soil depth (cm) 
 Peanut  Citrus 
 0–40 40–80 80–120 120–160  0–40 40–80 80–120 120–160 

Mean SWC  27.6a 27.8a 28.9a 28.6a  29.2a 32.9b 31.3a 32.1b 
CVT  15.0 9.5 7.1 6.1  15.9 10.6 10.3 8.2 
Mean SDRD  3.9 3.3 5.0 6.7  5.8 5.6 6.1 6.8 
MTSL  P6 P1 P1 P1  P7 P3 P3 P3 
SDRD of MTSL  2.6 1.6 2.6 4.0  3.0 3.3 3.2 3.4 

 

Mean SWCs flowed by different letters indicating significantly different between peanut and citrus sites (p < 0.05, paired samples t-test). 
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Fig. 4. Changes of temporal stability of soil water content (SWC) 
with 13 sampling intervals for peanut (a) and citrus (b) sites at  
0–40, 40–80, 80–120, and 120–160 cm soil layers during the train-
ing period (from July, 2013 to June, 2016), represented by the 
standard deviation of relative difference (SDRD) and its maximum 
relative error (Max-RE) of sub-datasets. 

 
 

Fig. 5. Changes of temporal stability of soil water content (SWC) 
with eight sampling periods for peanut (a) and citrus (b) sites at  
0–40, 40–80, 80–120, and 120–160 cm soil layers during the train-
ing period (from July, 2013 to June, 2016), represented by the 
standard deviation of relative difference (SDRD) and its maximum 
relative error (Max-RE) of sub-datasets. 
 

 
 
 
 

 

Table 3. Criterion of sampling interval and period to meet standard deviation of relative difference (SDRD) and soil water content (SWC) 
prediction with mean absolute value of relative error (Mean-ARE) over all sub-datasets lower than 10% for peanut and citrus sites at 0–40, 
40–80, 80–120, and 120–160 cm soil layers. 
 

Vegetation type Soil depth 
cm 

     Sampling interval        Sampling period 
SDRD Mean SWC  SDRD Mean SWC 

       
 
 
Peanut 

0–40 240 (4) 240 (4)  12 (23) 3 (5) 
40–80 240 (4) 240 (4)  18 (34) 3 (5) 
80–120 240 (4) 240 (4)  9 (17) 3 (5) 

120–160 210 (5) 240 (4)  12 (23) 3 (5) 
       
 
Citrus 

0–40 240 (4) 240 (4)  12 (23) 3 (5) 
40–80 240 (4) 240 (4)  18 (34) 3 (5) 
80–120 240 (4) 240 (4)  9 (17) 3 (5) 

120–160 240 (4) 240 (4)  9 (17) 3 (5) 
               

  Number in the brackets stands for the occasions of sampling required. 
 
Table 4. Criterion of sampling interval and period to meet standard deviation of relative difference (SDRD) and soil water content (SWC) 
prediction with maximum absolute value of relative error (Max-ARE) over all sub-datasets lower than 10% for peanut and citrus sites at  
0–40, 40–80, 80–120, and 120–160 cm soil layers. 
 

Vegetation type Soil depth 
cm 

     Sampling interval            Sampling period 
SDRD Mean SWC  SDRD Mean SWC 

       
 
 
Peanut 

0–40 60 (17) 45 (22)  — 24 (46) 
40–80 90 (12) 105 (10)  — 12 (23) 
80–120 90 (12) 180 (6)  24 (46) 6 (11) 

120–160 45 (22) 105 (10)  — 12 (23) 
       
 
Citrus 

0–40 75 (14) 75 (14)  24 (46) 18 (34) 
40–80 45 (22) 60 (17)  24 (46) 24 (46) 
80–120 45 (22) 90 (12)  24 (46) 18(34) 

120–160 45 (22) 90 (12)  24 (46) 9 (17) 
 

   “—” means that no investigated sampling frequency or sampling period meeting the requirement. 
 
 

 
suggest that the temporal stability of SWC was overestimated 
for short sampling periods. For the shortest sampling period 
duration (i.e. 3 months), the mean errors of sub-datasets were 
highest. 

 
The differences in Max-AREs among soil layers for peanut 

site were significant except for 0–40 vs. 40–80 cm and 0–40 vs. 
120–160 cm soil layers (p < 0.05, t-test) while no significant 
differences were observed among any of the soil layers for the 
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citrus site. Significant differences between the two vegetation 
types were observed at deeper soil layers (i.e. 80–120 and 120–
160 cm). Nevertheless, changing sampling frequency and dura-
tion did not change the ranks of relative magnitude for mean 
SDRD for both peanut and citrus sites, which were identical to 
that under the full dataset. 

The errors of temporal stability with changing sampling in-
tervals from scale effects (Mean-RE) and from the uncertainties 
(Max-REs) varied greatly. Taking the longest sampling interval 
(i.e. every 240 days) for the 36-month period as an example, the 
two sources of errors were –6.7% vs. –53.7%, –7.9% vs.  
–41.3%, –3.5% vs. –30.6%, and –12.7% vs. –46.3% for peanut 
and –3.7% vs. –21.8%, –7.9% vs. –55.1%, –7.8% vs. –47.6%, 
and –9.1% vs. –49.4% for the citrus site. The ratios between the 
scale effect and uncertainties from the temporal variation of 
inner scale ranged from 0.1 to 0.4. However, the differences of 
the errors from the two sources become more comparable when 
the sampling period decreased from 36 months to 3 months, 
with the ratio changing from 0.8–1.5. 

Requirements for sampling intervals and period duration to 
meet the criterion of ARE less than 10% for the mean and 
maximum SDRD of all sub-datasets are shown in Tables 3 and 
4, respectively. Long sampling periods appeared to be required 
to meet the criterion. For example, around 5 sampling occa-
sions were sufficient to ensure the AREs of mean SDRD were 
less than 10% for a total sampling duration of 36 months. How-
ever, corresponding sampling occasions need to be increased to 
17-34 sampling occasions for shorter monitoring periods (Table 
3). Both sampling interval and period duration required should 
improve largely to meet the maximum errors of all the sub-
datasets lower than 10% (Table 4). For example, the sampling 
interval should not be longer than 60 days for peanut at 0–40 
cm to obtain Max-ARE of all the sub-datasets around 10% 
(Table 4). For some extreme cases, i.e. citrus site at 0–40,  
40–80, and 120–160 cm, Max-AREs were consistently higher 
than 10% for all the investigated sampling periods. 
 
Influences of temporal sampling strategy on mean SWC 
prediction 

 
Prediction accuracy was generally high for most sampling 

strategies. Figures 6 and 7 show that Mean-ARE is always less 
than 5% except for citrus with a short sampling period, e.g. 3 or 
6 months (Fig. 7). These high prediction accuracies suggested 
that the temporal stability technique would generally be an 
appropriate tool for mean SWC prediction, even for a long 
sampling interval (e.g. once every 240 days) or for short sam-
pling periods (e.g. 3 months). 

Mean-AREs were more constant with changing sampling 
frequencies than sampling periods. Taking the citrus site as an 
example, when the sampling interval increased from 15 days 
(67 occasions) to 210 days (5 occasions), the Mean-AREs 
remained more or less the same for the four soil layers (Fig. 6), 
but with decreasing sampling period from 36 months (67 occa-
sions) to 3 months (5 occasions), they increased consistently 
(Fig. 7). Max-AREs, however, increased much more with in-
creasing sampling intervals and decreasing periods compared to 
mean errors. For example, the Max-AREs increased from 4.2% 
to 16.1% for peanut and from 5.7% to 21.7% for citrus at 0–40 
cm when sampling intervals increased from 15 days to 240 days 
(Fig. 6). 

Generally, the prediction accuracy of mean SWC was better 
for the peanut than the citrus site. The Mean-AREs of the dif-
ferent sampling frequencies for peanut were lower than for 
citrus at all four soil layers (p < 0.05, t-test), with the mean 

values of 2.5% vs. 3.6%, 1.7% vs. 3.1%, 1.7% vs. 4.2% and 
2.2% vs. 2.6%, respectively (Fig. 6). Relative to the differences 
between the two vegetation types, the differences among soil 
layers were smaller. No significant differences were observed 
in the Mean-AREs between 0–40 and 120–160 cm and between 
40–80 and 80–120 cm soil layers (p > 0.05, t-test). 
 
DISCUSSION 
Influence of vegetation on spatio-temporal patterns in SWC 

 
Soil water content of peanut and citrus sites exhibited differ-

ent spatio-temporal patterns: stronger temporal variations, 
weaker temporal stability and lower mean SWC prediction 
accuracies were found under citrus than for peanut. Such differ-
ences may be related to (a combination of) the differences in 
soils and vegetation characteristics between them. 

Firstly, soils at the citrus site have generally more clay com-
pared to those at the peanut site (Table 1). These differences in 
clay can be mainly related to a different degree of soil erosion 
(Jarasiunas and Kinderiene, 2016) which is higher for peanut 
than for citrus. In general, agriculture has shown to exacerbate 
soil erosion in this region. Zhao et al. (2012) reported that soil 
loss under crop production was three times higher than under 
forest land use. By preferentially removing clay, soil erosion 
can increase sand and decrease clay contents for agricultural 
soils (Lai, 1998). Higher clay content is generally associated 
with relatively weaker temporal variation of SWC (Wang et al., 
2017). This was inconsistent with observations in the present 
study, which showed that citrus had a larger clay content and 
stronger temporal variation in SWC. 

In addition, relative differences in soil hydraulic properties 
between the two vegetation types do not directly support the 
stronger temporal variation of SWC for the citrus site. Due to 
the traditional tillage at the peanut site (generally in late 
March), the KS of soils under this land use was 6-9 times higher 
than that at the citrus site at 0-20 cm soil at the time of sam-
pling (early May, 2014). However, there is also a strong tem-
poral variability in the soil hydraulic properties, which might 
not fully reflect the differences between sites as presented in 
Table 1. For example, for the same hillslope and based on ten-
sion infiltrometer data, Zhang et al. (2016) found that the tem-
poral variation in soil effective porosity and site contribution to 
water flux for a tilled crop (watermelon) was much stronger 
than for citrus. 

As such, the diverse temporal dynamics in soil moisture un-
der citrus may be related to the characteristics of vegetation. In 
addition to the preferential flow in root channels, root water 
uptake could also explain the differences observed between the 
moisture dynamics. Citrus trees generally use more water with 
uptake from over a larger range of depth (>100 cm) than a 
peanut crop (within 20 cm). Therefore, citrus trees could be 
associated with stronger temporal SWC dynamics by decreas-
ing the SWC in the dry season and allowing for more water 
storage in soils during the rainy and winter seasons (Fader et 
al., 2015). This may be exemplified by the sharp drop in the 
SWC in September 2014, which was more pronounced for 
citrus than for the peanut site (Fig. 3). 

 
Responses of “apparent” temporal stability to temporal 
sampling strategies 

 
Results showed that the temporal stability of SWC has a 

tendency to be overestimated with increasing sampling inter-
vals (only when >150 days) and decreasing the total duration of 
the sampling period. The extent of the overestimation was  
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Fig. 6. Changes of prediction accuracy of soil water content (SWC) 
with 13 sampling intervals for peanut (a) and citrus (b) sites at  
0–40, 40–80, 80–120, and 120–160 cm soil layers during the vali-
dation period (from July, 2016 to December, 2016), represented by 
the mean value and maximum of absolute value of relative error, 
Mean-ARE and Max-ARE, respectively. 
 
much lower with increasing sampling intervals than for de-
creasing the duration of the monitoring period. 

In the present study area, seasonal dynamics of SWC were 
strong (see Fig. 3), which appears to affect the temporal 
stability of SWC due to the seasonal controlling factors such as 
meteorological effects (Cho et al., 2016) and vegetation 
characteristics (Wang et al., 2015a). The overestimation could 
be due to the neglect of the variation within or between seasons 
when sampling frequency is low (e.g. less than one season) or 
when the total sampling period is short (e.g. shorter than one 
whole season cycle). Such under-sampled variation would have 
a general tendency to lead to an overestimation of temporal 
stability, as suggested previously by Biswas (2014) and Gao et 
al. (2015a). In addition, large study extent generally leads to 
high similarity of the spatial patterns, which decreases the 
requirements of the temporal sampling strategy (Zhang et al., 
2015). As such, the temporal sampling strategy may play a less 
important role in affecting the “apparent” temporal stability 
features in areas with weak seasonal patterns or at a relatively 
large spatial scale. SDRD values were much more constant with 
changing sampling intervals (Fig. 4) than sampling duration 
periods (Fig. 5). These diverse influences are probably related 
to the “aliasing” effect, which refers to the effect of spatial or 
temporal inner information partly “folded back” from low 
frequency to high frequency in sampling theory (Jenkins and 
 

 
 

Fig. 7. Changes of prediction accuracy of soil water content (SWC) 
with eight total sampling durations for peanut (a) and citrus (b) 
sites at 0–40, 40–80, 80–120, and 120–160 cm soil layers during 
the validation period (from July, 2016 to December, 2016), repre-
sented by the mean value and maximum of absolute value of rela-
tive error, Mean-ARE and Max-ARE, respectively. 
 
Watts, 1968). In other words, a stronger “aliasing” effect was 
always detected with changing spatial or temporal sampling 
spacing or interval, than for changes in the sampling duration or 
monitoring period. This “aliasing” effect has previously been 
reported for studies in groundwater (Gelhar, 1993), soil mois-
ture (Western and Blöschl, 1999), and soil saturated hydraulic 
conductivity (Gao et al., 2012). In this study, temporal stability 
information of SWC which “folded back” from low sampling 
frequency to high frequency might be responsible for the 
stronger influences of sampling period than sampling frequency 
on temporal stability of SWC. This is supported by earlier 
findings by Western and Blöschl (1999), who found that sample 
spacing had no effect on the apparent variance of SWC, which 
was ascribed to the “aliasing” effect. Relatively small impacts 
of sampling frequency on temporal stability of SWC extended 
previous reports by Rivera et al. (2014) who found that the 
temporal stability did not change with sampling intervals in a 
limited range from 7 to 28 days in the Central Valley of Chile. 
However, Gao et al. (2012) predicted that this “folded back” 
phenomenon would diminish or even disappear with increasing 
sampling intervals. This might explain that larger differences 
were eventually observed when sampling intervals were very 
high (e.g. 210 days or 240 days). 
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Wider implications for sampling strategy design 
 
The temporal stability index (i.e. SDRD) was more sensitive 

to the duration of the sampling period than the sampling inter-
val. Therefore, it is reasonable to suggest that for a given num-
ber of sampling occasions, it would be best to target occasions 
that capture the longer term natural variability in moisture 
conditions. In other words, it would be recommended to focus 
on long term monitoring rather than high frequency (short 
intervals) monitoring. In comparison to decreasing sampling 
intervals, a good distribution of limited sampling occasions 
within a long sampling period was more efficient to decrease 
the uncertainty in the temporal stability. For example, this can 
be demonstrated clearly by comparing results from two cases 
(C1 and C2) with similar sampling occasions but diverse sam-
pling strategies: e.g. C1 with a 45-day sampling interval over a 
36-month period (22 occasions) and C2 with a 15-day sampling 
interval over a 12-month period (23 occasions). Significant 
differences in the errors (p < 0.01, t-test) between the two strat-
egies indicated that it was reasonable to spend more effort 
extending the sampling period than improving frequency, when 
balancing between cost and accuracy. 

The required sampling strategy differed when only consider-
ing the scale effect and considering errors both from sampling 
scale and uncertainties. By evaluating the mean over all the 
sub-datasets, the errors of such values were caused only by 
temporal scale effects. For similar study sites, any sampling 
strategy with a sampling interval shorter than 240 days and a 
sampling period no shorter than 12 months with measurement 
occasions more than 5 may be recommended. However, it 
should be noted that here we employed a single sampling and 
did not collect all possible sub-datasets within the actual sam-
pling strategy, which has inevitably introduced uncertainties by 
ignoring variations between sites. It would therefore be neces-
sary to extend the temporal sampling scales to decrease the 
uncertainties.  

Considering the error both from sampling scale and uncer-
tainties, sampling once every 45 days over 24 months could 
result in errors less than 10% in most cases (Table 4). Since we 
intentionally explored sampling strategies for a case study with 
high variability in hydroclimatologic and related SWC, we 
assume that these recommendations would be appropriate for a 
large range of sites, and certainly for those sites exposed to less 
variability. To be safe in practice, a 45-day sampling interval is 
suggested to minimize potential impacts from more variable 
years or crops that may alter SWC dynamics even more than 
citrus. Clearly, there is a need for more data from (sub)tropical 
climates to explore a broader range of vegetation, soil manage-
ment and soil characteristics. 

Similar sampling frequencies were also recommended by 
Martínez-Fernández and Ceballos (2005) who suggested to 
sample monthly for a temporal stability study in the central 
sector of the Duero basin, Spain. The importance of keeping a 
suitable sampling frequency to get insights of seasonal process-
es was previously emphasized by Guber et al. (2008) and Rive-
ra et al. (2014). A complete seasonal cycle was important to 
capture seasonal dynamics of temporal stability caused by 
season-variable hydro-climatological conditions and vegetation 
phenology (Wang et al., 2015a). Nevertheless, the sampling 
period proposed in this study is also longer than reported previ-
ously, such as a one-year sampling period suggested by Mar-
tínez-Fernández and Ceballos (2005). A longer sampling period 
may be needed to account for the strong inter-annual variation 
of meteorological factors among the three-year study period, 
e.g. with rainfall of 1351, 1939 and 2193 mm, in consecutive 

years respectively (Fig. 3). Different rainfall total between 
years would affect the relationships between temporal stability 
and related factors. For example, Wang et al. (2015a) reported a 
significant decrease in the effects of vegetation on temporal 
stability when rainfall increased from 566 mm to 604 mm in a 
semi-arid grassland. 

There were no consistent differences observed in the identi-
fied most efficient sampling strategies for the different vegeta-
tion types and soil depths, as noted above. With regards to the 
Max-AREs of SDRD, the recommended sampling frequency 
for peanut was greater at 0–40 cm, smaller at 40–80 and 80–
120 cm, and comparable at 120–160 cm than citrus site (Table 
5). This suggests that the critical requirements could not be 
explained only by detected differences in spatio-temporal pat-
terns between vegetation types and among soil depths. Other 
factors, such as extreme weather conditions, preferential flow 
pathways and “hotspots” of subsurface flow might play an 
important role in determining such requirements. Dynamics of 
preferential flow or subsurface flow can result in varying rela-
tionships between SWC at different spatial locations (Zhu et al., 
2017). 

Finally, dynamics in rainfall result in another important  
factor that can affect the temporal stability behavior of SWC 
(Lee and Kim, 2017). While the exact influences of rainfall 
event dynamics on key hydrological processes also depend on 
local conditions (e.g. soils, slope position and microtopogra-
phy), it is known that during and directly after rainfall events, 
these can be different from before. There is additional work 
needed to evaluate if and how such effects translate into chang-
es of temporal stability behavior. Such information is critical to 
arrange sampling dates (e.g. with respect to occurrence of the 
rainfall events) that allow for capturing accurate temporal sta-
bility information of SWC. To our knowledge, previous studies 
have not taken this into account and mainly focused on year- or 
season-scale. Instead, those and the study employed a middle 
way to eliminate immediate rainfall event effects, i.e. all the 
sampling occurred at least two days after a rainfall event. As 
such, by excluding rainfall event conditions, we recognize that 
this may still result in a departure of observed data from “real 
world” situations to some extent, yet we focused here on the 
key longer term patterns. The effect of short term rainfall  
dynamics on temporal stability behavior should receive more 
attention in the future. This would require higher temporal 
resolution data collection than employed here. 
 
CONCLUSIONS 

 
Impacts of temporal sampling strategy on temporal stability 

behaviors of SWC were analyzed for peanut and citrus sites at 
four soil layers from a 3.5-year dataset (from July, 2013, to 
December, 2016) in the subtropical Chinese red soil region. 
The following conclusions were drawn: 

(1)  Vegetation type played an important role in affecting 
spatio-temporal SWC patterns. In the present study, SWC at the 
peanut site exhibited less temporal variation, stronger temporal 
stability and greater prediction accuracy of mean SWC com-
pared to the citrus site (p < 0.05, paired samples t-test). These 
differences were mainly caused by the diverse characteristics of 
the vegetation itself, e.g. root water uptake. 

(2)  With increasing sampling interval or decreasing moni-
toring duration, temporal stability of SWC was generally over-
estimated and affected more by the duration of the total sam-
pling period than the interval between sampling occasions. 
With increasing intervals between sampling occasions, errors of 
temporal stability were mainly caused by the increasing uncer-
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tainties and with decreasing sampling periods, however, the 
errors caused by scale effect and uncertainties were comparable. 

(3) Sampling design strategies in future studies on temporal 
stability of SWC should consider distributing limited sampling 
occasions over a long sampling period, rather than focusing on 
high frequency sampling. More specifically, balancing cost and 
accuracy, a sampling strategy with 45-day sampling interval 
over 24 months is recommended in study areas similar to our 
site. If only mean SWC prediction is desired, the sampling 
interval and period duration could be further decreased. No 
significant differences between recommended sampling strate-
gies were observed for peanut and citrus sites among four dif-
ferent soil layers. Therefore, employing uniform sampling 
strategies for different vegetation types and soil layer depths 
was reasonable here. 

Although precise recommended sampling strategies are ref-
erential to areas with the same or similar climates, vegetation 
types and soils, the need for long-term rather than high fre-
quency monitoring has wider applications. Nevertheless, for 
areas where differences in spatial patterns for SWC inter- or 
intra-seasons is weak, it is reasonable to infer that required 
sampling intervals and sampling periods could be less. Since 
previous studies have speculated that the effects of sampling 
strategies might be more variable under climates with strong 
seasonality, we consider that the results here represent an ex-
treme scenario that allows for widespread adoption. 
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