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Abstract: The relative hydraulic conductivity curve Kr(h) = K/Ks is a key variable in soil modeling. This study proposes 
a model to represent Kr(h), the so-called Gardner dual (GD) model, which extends the classical Gardner exponential 
model to h values greater than ho, the suction value at the inflection point of the Kr(h) curve in the log-log scale. The 
goodness of fit of GD using experimental data from UNSODA was compared to that of the MVG [two-parameter (Kro, 
L) Mualem-van Genuchten] model and a corresponding modified MVG model (MVGm). In 77 soils without evidence of 
macropore flow, GD reduced the RMSE errors by 64% (0.525 to 0.191) and 29% (0.269 to 0.193) in relation to MVG 
and MVGm, respectively. In the remaining 76 soils, GD generally was less accurate than MVG and MVGm, since most 
of these soils presented evidence of macropore flow (dual permeability). GD has three parameters and two degrees of 
freedom, like MVG. Two of them allow the calculation of the macroscopic capillary length, a parameter from the infil-
tration literature. The three parameters are highly dependent on the Kr(h) data measurement in a short wet suction range 
around ho, which is an experimental advantage.  
 
Keywords: Hydraulic conductivity curve; Gardner exponential model; Mualem-van Genuchten model. 

 
INTRODUCTION 
 

The unsaturated hydraulic conductivity curve is a key soil 
hydrodynamic function in water and solute transfer in the va-
dose zone. Variations in the K(h) curve are highly non-linear 
with suction h (h > 0) at the same time that they may reach 
values of various orders of magnitude. This requires a reliable 
mathematical model of representation of this curve for the 
proper description of hydraulic flows. In this study, we will 
assume the saturated hydraulic conductivity (Ks) to be a pre-
established parameter and therefore it is sufficient to consider 
the relative hydraulic conductivity Kr = K/ Ks. 

Thus, the choice of a mathematical model to represent the Kr 

vs. h data is crucial (in this study we will not use the Kr(θ) 
models, where θ is the volumetric water content; the suction is 
expressed in cm). The Kr(h) curve is usually given graphically  

 

in the log-log scale (Figure 1), where log = log10. Figure 1 
shows a typical graph with the log Kr vs. log h data plot tending 
to the origin (h tending to 1.0 cm and Kr tending to 1.0) in a 
convex curve asymptotic to the horizontal axis log h. Above 
certain ho suction values, there is a general tendency to an in-
flection of the experimental plot and to its curvature to become 
concave or quasi-linear (as in Figures 2 and 3 in Peters and 
Durner (2008), for example). Other graphs like this one will be 
shown along the study. According to Peters and Durner (2008) 
this inflection might be caused by film flow effects which 
would be relevant to define Kr(h) in higher suction ranges (h > 
ho), but irrelevant and largely dominated by capillary bundle 
flow effects in wetter moisture ranges (h < ho). Various strictly 
empirical equations were proposed to represent Kr vs. h data 
between the 1950s and 1970s, as reported by Raats and Gardner 
(1971), Vereecken et al. (1990) and Leij et al. (1997). The most  
 

 
 
 
 
Fig. 1. Typical example [soil 4670 
from the UNSODA database (Leij et 
al., 1996)] of representation of data of 
the relative conductivity curve Kr = 
K/Ks; a curve inflection tendency can 
be observed around suction ho. The 
Wind and Gardner exponential equa-
tions were adjusted only for the meas-
ured data set with h ≥ 100 cm or h ≤ 
100 cm, respectively. The Mualem-van 
Genuchten equation was adjusted for 
the complete data set. 
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commonly used, according to Vereecken et al. (1990), are those 
where suction appears in a power or exponential function, as 
shown below. 

One of the pioneer and frequently used empirical equations 
is the Wind power equation (Wind, 1955), also called the 
Brooks and Corey (Leij et al., 1997) hydraulic conductivity 
equation, or the Campbell (Wösten et al., 2001) equation. 

 
Kr = ah–b,        a and b > 0. (1) 

 
This equation fits the log Kr vs. log h data to a straight line. 

It is valid only for suction values greater than a minimum value 
(Campbell (1974) and Poulsen et al. (1999) propose minimal 
values of 100 cm and 20 cm, respectively). Therefore, the mod-
el is inadequate to fit the Kr(h) curve at suction ranges close to 
saturation, as shown in Figure 1. Outside the convex range of 
the data plot, some soils tend to linearity, as shown in Figure 1, 
which justifies using Equation (1). As the Wind equation does 
not apply to low suction values, it is not recommended to de-
scribe ponding or low tension infiltration flows. 

The most used empirical Kr(h) equation in the literature on 
infiltration is the Gardner one-parameter exponential model 
(Gardner, 1958): 

 

Kr = e–h/λ. (2) 
 

Parameter λ > 0, called the macroscopic capillary length 
(White and Sully, 1987), is expressed in cm in this paper. The 
sorptive number, α = 1/λ (White and Sully, 1987), is often used 
instead of λ. An acknowledged inconvenience of this equation 
is that it fits the Kr vs. h data properly generally only in a lim-
ited suction range close to saturation (Communar and Fried-
man, 2014; Gardner, 1958; Jarvis and Messing, 1995; Russo, 
1988), as shown in the example in Figure 1, where it is inap-
propriate for h >100 cm, in contrast to that observed for the 
Wind equation. Figure 1 makes it clear that the convex part of 
the experimental data plot is well represented by the Gardner 
exponential model. Beyond inflection point ho = 130 cm, the 
model results are greatly different from the experimental data. 

Equation (2) is largely used because it allows linearizing the 
Richards equation in cases of steady (Wooding, 1968) and 
unsteady flows (Philip, 1969; Warrick, 1974). Based on this 
linearization, various analytical solutions related to infiltration 
have been developed for both surface and sub-surface water 
application methods. These solutions underlie many infiltration 
test methods for in-field determination of saturated hydraulic 
conductivity and macroscopic capillary length. The most popu-
lar tests use the steady flow condition and their most popular 
devices are: the ring infiltrometers (Reynolds, 2008a; Reynolds 
and Elrick, 1990), disk (or tension) infiltrometers (Clothier and 
Scotter, 2002; Reynolds, 2008b), and constant head well per-
meameters (Reynolds et al., 1985; Reynolds, 2008c). Analytical 
solutions based on Equation (2) for transient infiltration flows 
with various water application devices are also common in the 
literature (Philip, 1986; Reynolds, 2011; Vandervaere, 2002, 
among others), including solutions related to drip irrigation 
engineering (Communar and Friedman, 2014). Inversion of the 
Richards equation for infiltration flows using numerical meth-
ods to determine Ks and λ is also made easy by the use of Equa-
tion (2), because in this case the K(h) curve requires only these 
two parameters, which is advantageous since the corresponding 
numerical scheme usually provides a single solution with effi-
ciency and convergence (Lazarovitch et al., 2007). The great 
acceptability of Equation (2) to handle infiltration flows results 
from its generally good representation of Kr vs. h data at low 
suction ranges, which are the suction ranges most representa-

tive of usual infiltration processes. Another advantage of Equa-
tion (2) is that its shape parameter (λ) is a strictly hydraulic-
structural soil variable, such as the saturated hydraulic conduc-
tivity (Ks), because, according to the infiltration theory by disk 
infiltrometers at zero suction on the imbibition surface 
(Vandervaere, 2002; White and Sully, 1987): 

 
2= 0.55/( – )s p s iλ K S θ θ , (3) 

 

where θs and θi are the volumetric water content at saturation 
and at initial conditions before wetting, respectively, and Sp is 
the soil sorptivity, defined as 
 

0
= lim d /dp

t
S I t

→
, (4) 

 

where I is the cumulative infiltration (infiltration volume divid-
ed by the disk area) and t is the infiltration time. Soil sorptivity 
(at zero suction on the imbibition surface) depends on θs minus 
θi and is a measure of the capacity of the soil to absorb infiltra-
tion water strictly due to soil pressure gradients (capillarity). 

The last strictly empirical equation we refer to is the Gardner 
power equation (Gardner, 1958):  
 

Kr = (1 + chd)–1,            c and d > 0.  (5) 

 

As demonstrated in Figure 3 from Raats and Gardner (1971), 
in a log-log graph and at low suction values, Equation (5) ex-
presses Kr(h) as a convex curve asymptotic to the horizontal 
axis (h) and which tends to a straight line with the increase in h, 
that is, Equation (5) simultaneously incorporates the qualities of 
the Wind and Gardner exponential equations (Figure 1). In 
principle, this must reflect on a better fit of Equation (5) in 
relation to the fit of the other two equations for wider suction 
ranges, from saturation to high tensions. This superiority of 
Equation (5) was demonstrated by Vereecken et al. (1990) 
using a database with 45 soils. The Mualem-van Genuchten 
(MVG) model will be discussed next. However, in a log-log 
scale, similarly to the Gardner power model, it also gives a 
convex curve at low suctions and fits to a straight line at higher 
tensions (Figure 1; Figure 2 in van Genuchten, 1980). In fact, 
the literature confirms that at wide suction ranges Equation (5) 
in general has experimental data fit errors comparable to those 
of the MVG model (Schaap and Leij, 1998; Vereecken et al., 
2010; Weynants et al., 2009). 

Instead of strictly empirical relations, another tendency is to 
determine the Kr(h) curve from the water retention curve, θ(h), 
as its data are more easily obtained than those of the former. 
For this reason, hydraulic models are recurrent in the literature 
dedicated to the determination of Kr based on the calculation of 
the porous space distribution. The abovementioned MVG mod-
el is one of such models, where: 

 

( )
21–1//( –1)= 1– 1–

nL n n
rK S S 

  
, (6) 

 

( ) ( )
–(1–1/ )

= = 1+
nnS S h αh 

 
,  (7) 

 

( ) r

s r

θ h – θ
S =

θ – θ
 . (8) 

 

Equation 6 represents the Mualem (1976) hydraulic conduc-
tivity model which can be applied to the van Genuchten expres-
sion, Equation (7) (van Genuchten, 1980), which in turn allows 
using suction h to calculate the soil effective saturation, S, 
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defined in Equation (8). In fact, Equations (7) and (8) model the 
water retention curve. In the MVG model, parameters θs (satu-
rated water content), θr (residual water content), and the two 
shape parameters, α (cm–1) and n (dimensionless), can be con-
sidered water retention curve data fitting parameters, while 
parameter L (pore connectivity, dimensionless) can be consid-
ered a hydraulic conductivity curve data fitting parameter (Ve-
reecken et al., 2010). The four water retention curve parameters 
are positive, except θr, which can also be null (rarely has it been 
fitted with a negative value, according to Vereecken et al., 
2010), and n > 1. Parameter L can be positive, null or negative 
(Schaap and Leij, 2000). MVG (Equations 6–8) is the most 
popular hydraulic conductivity model based on the water reten-
tion curve, among the various equivalent models that have been 
proposed (Kosugi et al., 2002; Leij et al., 1997). It also is the 
most used representation of the Kr(h) curve in the mathematical 
simulation of flows and transport in the vadose zone (Vereeck-
en et al., 2010). The MVG model was conceived to fit Kr(h) in 
a wide suction range, generally from saturation to the “wilting 
point” [θ(h = 15000 cm)]. Its most used version is the one 
which does not require any Kr vs. h experimental data. In this 
case, the default value of L = 0.5 is used (Mualem, 1976; van 
Genuchten, 1980) and the Kr(h) curve can be obtained simply 
from the parameterization of the θ(h) curve. However, the 
default L = 0.5 must be considered cautiously, since in the 
study by Schaap and Leij (2000) of 235 soils from the UNSO-
DA database (Leij et al., 1996), L = –1 resulted in a decrease in 
the mean fitting error of Kr(h) by 43% (1.31 for L = 0.5 to 0.75 
for L = –1).  

The flexibilization of the MVG model considers a multipli-
cative factor (Kro ≤ 1) in Equation (6): 
 

( )
21–1// 1)1– 1–

nL n (n–
r roK K S S =   

. (9) 

 

This new parameterization of the MVG model (Equations 
(7–9)) requires two fitting parameters for the Kr(h) curve, Kro 
and L, which makes the MVG model more accurate (Veerecken 
et al., 2010). In fact, in the study by Schaap and Leij (2000), 
parameterization of Equations (7–9) applied to the authors’ 
database led to a significant decrease in the fitting mean error 
of Kr(h), 69%, (1.31 for L = 0.5, Kro = 1, in contrast to 0.41 for 
flexible L and Kro), in relation to the most common parameteri-
zation with default L = 0.5. As the focus of our study is the 
accuracy of the mathematical representation of the hydraulic 
conductivity curve in the soil moisture range from saturation to 
the “wilting point”, the MVG model parameterized with Equa-
tions (7–9) will be adopted here as a reference, also due to its 
great acceptability. An inconvenience of this reference model is 
that with Equation (9), Kr(h = 0) = Kro ≤ 1.0, that is, generally 
K(h = 0) ≠ Ks, which is an inconsistency. In spite of this, anoth-
er argument for the use of Equations (7–9) in this study as a 
reference is that certain soils can present a dual permeability 
field close to saturation (suction range from zero to a few cen-
timeters): the first permeability field takes up a greater soil 
volume, is relatively macroscopically homogeneous and has a 
slower flow, usually called matrix flow; and the second, of 
smaller volume than the first one, is much more heterogeneous 
within the soil volume and has a faster flow, called macropore 
or fast flow. The latter field, formed by large and clearly indi-
vidualized pores or cracks, and/or large spaces between soil 
peds, is well described in the literature (Beven and Germann, 
1982; Jarvis, 2007; Lassabatere et al., 2014; Perret et al., 1999) 
and its hydraulic behavior has been modeled (Jarvis, 2008; 
Larsbo and Jarvis, 2006; Lassabatere et al., 2014). In porous 

structures where this double permeability close to saturation 
clearly occurs, the macropore flow is commonly a major com-
ponent of the total flow. As a result, the saturated and unsatu-
rated hydraulic conductivity (in the very wet range) can be 
strongly influenced by the macropore flow. Outside the narrow 
suction range where both flows occur interactively, the 
macropore flow becomes null and the unsaturated hydraulic 
conductivity is determined by only the matrix flow. Due to the 
narrow suction range (approximately 0–10 cm, as proposed by 
Jarvis, 2007) where the macropore flows occur, various authors 
(Schaap and van Genuchten, 2006; van Genuchten and Nielsen, 
1985; Vereecken et al., 2010) admit that the strictly empirical 
equations and the usual models of representation of Kr(h), such 
as Equations (7–9), can represent only the matrix flows. For 
this reason, Equation (9) is used here as a reference in the rep-
resentation of the Kr(h) curve, despite the fact that Kro in Equa-
tion (9) can be smaller than 1 (sometimes by various orders of 
magnitude) in soils that present macropore flow. Schaap and 
Leij (2000) determined an approximate mean value of Kro = 0.1 
for their database, which indicates that soils with macropore 
flow were frequent. In the MVG parametrization of the soil in 
Figure 1, Kro = 0.81 and there is no marked tendency to dual 
permeability, since the data plot in the very wet range (0–10 cm 
suction) clearly tended to the origin of the axes smoothly and 
asymptotically to the log h-axes. We can see that the MVG 
model (Equations (7–9)) represented the data for this soil rela-
tively well across the whole suction range. 

Schaap and van Genuchten (2006) introduced a modification 
suggested by Vogel et al. (2001) into the MVG model (Equa-
tions (7–9)) in an attempt to improve its efficiency, mainly in 
the suction range close to saturation. Additionally, they also 
included the macropore flow effects. The final product, the 
modified MVG model (MVGm), was tested with the same 
previously mentioned database (Schaap and Leij, 2000). The 
representation of the Kr(h) curve improved significantly (37%) 
in relation to Equations (7–9) (error of 0.41 in contrast to 0.26 
with the MVGm model). Although this result is promising, the 
MVGm model has not been widely used. 

Assuming that the Gardner exponential model (Equation (2)) 
can be satisfactorily applied in a limited suction range close to 
saturation, the main objective of this study was to modify this 
model to extend it to suction values greater than a certain tran-
sition suction value, ho. The extended model has been labeled 
Gardner dual model (GD). Another objective was to describe 
the GD model behavior and its parameters. The proposed model 
will be tested with practically the same database as that used by 
Schaap and Leij (2000) and its performance will be compared 
mainly to that of the Mualem-van Genuchten (MVG) model 
(Equations (7–9)), but also to that of the modified MVG model 
(MVGm). The measured suction of the samples varied from 
minimum values from 1 cm to 40 cm to maximum that rarely 
exceeded 15000 cm. 

 
MODEL DEVELOPMENT AND DESCRIPTION 

 
The GD model assumes that for h ≤ ho, the transition suc-

tion, the depletion of Kr is exponential to the increase in h, as 
predicted by Equation (2). The exponential depletion will be 
extended to h ≥ ho, but on the log scales of Kr and h (h ex-
pressed in cm), that is, for h ≥ ho: 

 
–log /log = + h β

rK a be ,  (10) 
 
where β > 0, the conductive depletion coefficient (dimension-
less), is a parameter of the GD model. Constants a and b will be 
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calculated so that Kr(h) is continuous and smooth (with contin-
uous derivative) at h = ho. Making X = log h, Xo = log ho, Y = 
log Kr, Yo = Y(Xo) = log Kro (different from Kro in Equation (9), 
despite the same notation), which from Equation (2) is: 
 

Yo = –(log e)ho/λ, (11) 
 

where λ is the macroscopic capillary length and e is the Neper 
constant, thus: 
 

( ) log /o o olog e ; e h βh h β
a β b

λ λ
= − + = . 

 

Using Equations (2) and (11) and applying the two expres-
sions above to Equation (10), the GD model becomes: 
 

Y = Y(X) = (–log e/λ)h, 0 ≤ h ≤ ho, (12a) 
 

–( – )/o o
o – = 1– e X X βh β

Y Y
λ
 
  , h ≥ ho.  (12b) 

 

The derivatives of Y are: 
 

dY/dX = –h/λ, 0 ≤ h ≤ ho ,  (13a) 
 

( ) –( – )/o
od /d = /log e e X X βY X Y , h ≥ ho. (13b) 

 

2 2d /d = – <0, 
(log e)

h
Y X

λ
0 ≤ h < ho, (14a) 

 

–( – )/2 2 o o–
d /d = e >0

(log e)
X X βY

Y X
β

, h > ho . (14b) 

 

Analyzing the behavior of the Y(X) curve at Xo, Equations 
(11) to (13) confirm that it is continuous and smooth, with: 
 

dY/dX ( )oX X −→ = –ho/λ = dY/dX oX X +
 

→ 
 

 = Yo/log e. (15) 

 

Xo is a point of inflection of the Y(X) curve, since Equation 
(14) indicates that the signal of d²Y/dX² changes at Xo (and also 
d2Y/dX2 is discontinuous), and the Y(X) curvature changes from 
convex (d²Y/dX² < 0, h < ho) to concave (d²Y/dX² > 0, h > ho), as 
shown in Figure 2. Equations (14b) and (15) also show that: 
 

o

2 2
o+

d /d ( )
= – ,

d /d ( )

Y X X
β

Y X X X→
  (16) 

 

which confirms that the three model parameters (ho, λ, β) are  
 

entirely determined by the Y(X) curve behavior at the X = Xo 
inflection point. 

Using the GD model, we next define a soil structural index 
related to the Y(X) curve, similar to the S structural index in 
Dexter (2004) related the water retention curve, w(log h) (w is 
the gravimetric water content), defined as S = –dw/d(ln h) (h = 
ho’), where ho’ is the w(log h) curve inflection point and ln is the 
natural logarithm. This new parameter will be labeled conduc-
tive depletion index (dimensionless) and represented as the Sk 
index, defined as: 
 

Sk = – dY/d(ln h) (h = ho). (17) 
 

As dY/d(ln h) = dY/dX log e, by Equations (15), (17) and (11): 
 

Sk = –Yo = –log Kro = (log e)ho/λ. (18) 
 

Figure 2 shows an example of fit of the Y(X) curve based on 
the GD model; the (Xo,Yo) inflection point and its tangent straight 
line are indicated, including the graphic representation of the 
derivative, which, according to Equations (15) and (18), is: 
 

|dY/dX(Xo)| = T = tg(γ) = Sk/log e. (19) 
 

The dual model (Equation (12)) can also be calculated from 
Equation (20) using variable g = h/ho and the Sk index (Equation 
(18)): 

 

–Y(g) = log (Kr
–1) = Sk dβ(g), (20a) 

 

dβ(g) = g, 0≤g≤1, (20b) 
 

dβ(g) = 1 + (β/log e) [1 – g–(log e/β)], g≥1. (20c) 
 

Function dβ(g) varies as a power function, is smooth at g = 1 
and depends only on parameter β. Its curve in Figure 3 (g is in 
log scale and dβ is in decimal scale) has the same shape (invert-
ed) as that of Y(X) (Figure 2), since log g = X – Xo, and, from 
Equations (18) and (20a): 
 

dβ = Y/Yo = log Kr/log Kro. (21) 
 

Due to Equation (21), dβ(g) can be considered a normalized 
relative hydraulic conductivity curve. Thus, from Equation 
(20a), the parameter Sk is a multiplicative structural index of 
unsaturated hydraulic conductivity and the hydraulic conductiv-
ity, Ko, corresponding to Yo: 
 

Ko = K(h = ho) = Kref = Ks/(10Sk), (22) 
 

can be considered a reference unsaturated hydraulic conductivi-
ty or a soil physical quality parameter. 
 

 
 
 
 
Fig. 2. Example (UNSODA database soil 
4661) of fit of the experimental data to the 
Y(X) curve calculated with the GD model; 
curve inflection point at ho = 35 cm indi-
cated. Sk index = 2.14 and the absolute 
value of the derivative [tg(γ)] at the curve 
inflection are also indicated. From Equa-
tion (18), λ = 7.09 cm. From Equation (16), 
the curvature of the concave part of the 
curve (X > Xo) close to its inflection de-
pends on parameter β = 1.38. 
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In order to characterize the influence of parameter β on the 
shape of dβ(g) curves, we defined the positive fraction Fg based 
on a given g>1 (h> ho) value: 

 

Fg = |(Y – Yo)|/ [T (X – Xo)] = (Y – Yo)/ [–T (X – Xo)], (23) 
 

where T is the same as in Equation (19). From Equations (18), 
(20a) and (20c): 

 
–log e/ –log /

g g= ( )=( /log )(1– )=( /log )(1– e )β g βF F β β g g β g .(24) 
 

From the equation above, g
0

lim
β

F
→

= 0, from which Equation 

(23) shows that Y tends to Yo when β tends to 0, which, accord-
ing to Equation (21), implies that do(g) = 1, as in Figure 3 
(g>1). When β tends to infinite, according to Equation (14b), 
d²Y/dX² tends to 0 and the Y(X) curve tends to the straight line 
below: 
 

Y – Yo = –T (X – Xo), (X > Xo, β→∞). (25) 
 

Applying Equation (25) to Equation (23), lim g
β

F
→∞

 = 1 and, 

from Equations (18), (19), (20a) and (25): 
 

d∞(g) = 1 + (log g/log e),  (26) 
 

the same as in Figure 3, where d∞(g) is linear (g > 1). Equation 
(25) implies that the Wind equation (Equation (1)) is a particu-
lar case of the GD model, when h > ho and β tends to infinite 
(or β > 100, as shown in Figure 3). In this case, power b in the 
Wind model is the value of T = Sk/log e. 

When β does not tend to zero or infinite, its influence on the 
shape of the dβ(g) curves, g > 1, [or on the shape of Y(X),  
 

X > Xo], is better characterized considering the particular case 
of fraction Fg (Equation (24)) when g = 10, that is: 
 

F10 = f(β) = β [1 – e–(1/β)].  (27) 
 

The f(β) value, labeled linearization fraction, is a much more 
adequate parameter to describe the shape of the Y(X) curve, for 
X > Xo, than parameter β. The values of f(β) [0 < f(β) < 1] are 
shown in Figure 4. For f(β) > 0.90 (β > 5 approximately), Fig-
ure 3 indicates that Y(X) is nearly linear; for β > 100 [f(β) > 
0.995], Y(X) is practically linear and invariant for β. When f(β) 
< 0.90 (β < 5 approximately), the linearity of Y(X), X > Xo, can 
be questioned, and its curvature at Xo increases with the de-
crease in β, as shown in Figure 3. Therefore, the GD model 
flexibilizes the convex-linear shape (described in the Introduc-
tion) of the Y(X) curves generated by the Gardner power and 
Mualem-van Genuchten models for the entire suction range, 
from saturation to h > ho. 

When the coordinates (Xo, Yo) of the inflection point of Y(X) 
are known, parameter β can be estimated from a single meas-
urement of the hydraulic conductivity at a suction greater than 
ho, that is, for a known value (X*,Y*) of pair (X,Y), X*>Xo. In this 
case, fraction Fg* can be calculated (Equations (18), (19) and 
(23)), and, as function Fg(β) is invertible for any g>1 (since 
dFg/dβ > 0): 

 

–1 –1 * *
* * * o o o= [ ( )]= (log e/ )( – )/( – )g g gβ F F β F Y Y Y X X 

  . (28) 

 

Applying the equation above to the example in Figure 2, 
where Xo = log 35, X* = log 350, Yo = –2.14, Yo

* ≈ –5.7 (graph-
ically), then g* = 10, Fg* = f(β), and β = f–1(Fg* = 0.72) = 1.4 
(Figure 4). 
 

 
 
 
 
 
 
Fig. 3. Normalized relative hydraulic 
conductivity curve (dβ function) and its 
variations with parameter β, including 
the two limiting curves with β tending 
to zero and infinite. The infinite-β 
curve practically coincides with that of 
β = 100. 

 

 
 

 
Fig. 4. Relationship between the linearization fraction, f(β), and the conductive depletion coefficient, β. 
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SOIL DATABASE 
 
Hydraulic and textural data were taken from the database in 

Schaap and Leij (2000), who selected 235 soil samples from the 
UNSODA international database (Leij et al, 1996; Nemes et al., 
2001). The water retention curve data [with at least six pairs (θ, 
h)] and hydraulic conductivity data [with at least five pairs 
(K,h)] for the 235 samples were determined, as well as the 
saturated hydraulic conductivity values, Ks. Other information 
from this database, including the methods of determination of 
the variables, the specification and definition of the textural 
classes, as well the sample distribution per textural class 
groups, are described by Leij et al. (1996), Schaap and Leij 
(2000), and Nemes et al. (2001). From the 235 samples, 82 
were excluded for introducing uncertainty in the optimization 
of the parameters of the model proposed. The most frequent 
source of uncertainty was the indirect determination of Ks using 
pedotransfer functions for 60 samples. For the other samples, Ks 
was determined by direct measurement. Another 17 samples 
were excluded because their K was measured only in a limited 
suction range, either under 100 cm or over 40 cm. Five more 
samples were omitted due to inconsistent (K, h) pair measure-
ment close to saturation. Therefore, the database of this study 
contained 153 samples. The measured suction with any tested 
soil varied from a minimum from 1 cm to 40 cm to a maximum 
that rarely exceeded 15000 cm. 

 
PARAMETER OPTIMIZATION 

 
Let be a set of N (N ≥ 3) data pairs of the relative hydraulic 

conductivity data of a sample, forming two sequences: {hi, hi ≥ 
1 cm} (increasing sequence) and {Ymi = log Krm(hi)}, i = 1,..., N, 
where subscript m indicates the measured value. The minimum 
limits of h1 = 1 cm and N = 3 are arbitrary. Let hmin be the 
smallest suction value hi such that Krm(hi) < 1 (Ymi < 0) and let 
hmax = hN. For lack of data, the optimization algorithm will not 
work if hmax ≤ 100 cm and hmin > 40 cm. The latter restriction 
results from the fact that the transition suction, ho, cannot be 
optimized if ho < hmin (because in this case there would not be 
any data to characterize the Kr depletion of Equation (2)). 
Therefore, so as not to jeopardize the optimization of the GD 
model parameters, an appropriate number of measurements at 
low suction range (hi < ho) is desirable. If the optimized ho is 
equal to hmax, the algorithm considers the GD model to be the 
Gardner exponential model. 

Using Equation (12) to represent the GD model, the objec-
tive function to optimize its three parameters (ho, λ, β) was to 
minimize the sum of the square errors (SSE): 

 

2

=1
SSE = ( ( ) – )

N

i mi
i

Y h Y  (29) 

 

A Visual Basic computer program was written to interface 
with Microsoft Excel spreadsheets for the calculation of the 
algorithm of determination of the three parameters. Additional-
ly, the program also calculates the error evaluation statistics 
described next. The suction and hydraulic conductivity data are 
inputted in the main window of the program, which also con-
tains the routine execution buttons. The program is available 
from the corresponding author upon request. The alternative 
model parameters, Sk and f(β), are calculated from ho, λ and β 
with Equations (18) and (27), respectively. 

 
 
 

MODEL EVALUATION 
 
The model was evaluated based on the two indicators de-

scribed below which were calculated for each soil sample: Root 
Mean Square Error (RMSE) and Mean Error (MEj) for each j 
suction interval. 

RMSE (dimensionless) is a measure of the global mean error 
of fitting to N pairs of sample data [(hi, Ymi)], given by: 
 

RMSE= SSE/( – 2)N ,   (30) 
 

where SSE is given by Equation (29) and Y by Equation (12) for 
the optimized model parameters. Although the GD model has 
three parameters, it has only two degrees of freedom as Equation 
(12) is defined by parts (h < ho and h > ho), each part containing 
only one parameter (λ or β, respectively), which makes the de-
nominator of Equation (30) equal to (N – 2), instead of (N – 3). 

ME (dimensionless) complements the RMSE measure by 
calculating the fitting error in each of the following nine suction 
intervals, represented by the limits: 1.0, 3.2, 10, 32, 100, 320, 
1000, 3200, 10000, 32000 cm. The value of MEj for each j 
value (1≤ j ≤9) is given by: 

 

=1

1
= ( ) – log ( )  

N j

j ji rm ji
ij

ME Y h K h
N

    ,  (31) 

 

where Nj is the total number of measurement pairs [hji, Krm(hji)] 
in suction interval j and Y is calculated with Equation (12) 
using the optimized parameters. Thus, a positive or negative 
MEj value indicates that the model respectively either overesti-
mates or underestimates the Kr values in interval j. 

For a sample set, the goodness of fit of the model is given by 
the arithmetic mean of the RMSE values of the samples, and for 
each j value, j = 1,…,9, by the weighted mean of the MEj values 
of the samples (with the weight equal to the number of meas-
urements of the respective sample within interval j). 

 
Comparison with the Mualem-van Genuchten models 

 
The method of evaluation described above is identical to that 

used by Schaap and van Genuchten (2006) to evaluate the fitting 
errors of models MVG and MVGm, with, roughly speaking, the 
same database used in our study (in fact they used the 235 sam-
ples from the UNSODA database, as already mentioned, rather 
than the 153 samples of this study). Both models also have two 
degrees of freedom. All this makes the comparison of the Gard-
ner dual model to these two models easier. The authors also 
kindly granted us access to their full database (personal commu-
nication). We will use the same four soil sets that they used to 
compare the performance of the models according to textural 
class groups, namely Sands, Loams, Silts and Clays. 

Table 1 and Figure 5 show, respectively, the RMSE mean 
values and the probability distributions of the RMSE values, for 
models GD, MVG and MVGm. Considering the complete 
database (Figure 5a), we observe that model GD in general 
calculates the Kr curve data with intermediate accuracy in rela-
tion to the two other models, with a mean RMSE of 0.378 for 
GD, and 0.468 and 0.280 for the MVG and MVGm models, 
respectively. The goodness of fit of the GD model improves 
substantially when only the model's 77 best fitting soils (50% 
percentile) are considered, giving an RMSE < 0.32 (Figure 5a). 
These soils make up database A in Table 1. In this case, accord-
ing to Table 1, the GD model mean error was confirmed to be 
64% smaller than that of the MVG model (0.191 in contrast to  
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Table 1. RMSE values for the complete database and for four sub-
sets of its soils taking into account models GD, MVG and MVGm. 
 

Database 
Number of 
Soils 

Mean RMSE 

GD model MVG model 
MVGm 
model 

Complete 153 0.378 0.468 0.280 
* A 77 0.191 0.525 0.269 
** B 76 0.569 0.410 0.291 
*** A’ 55 0.236 0.558 0.278 
**** B’ 50 0.554 0.386 0.250 

 

* soils with RMSEGD < 0.32; ** soils with RMSEGD ≥ 0.32; *** soils with 
Kr measurements in range h ≤ 10 cm; all Kr values > 0.10 in this suction 
range; **** soils with Kr measurements in range h ≤ 10 cm; at least one Kr 
value ≤ 0.10 in this suction range. 
 
0.525) and 29% smaller than that of the MVGm model (0.191 
in contrast to 0.269), which indicates the superiority of the 
model proposed regarding the goodness of fit for A, as also 
shown in Figure 5b. 

However, the goodness of fit of the GD model was much 
poorer when only soils in database B (76 soils) were consid-
ered; database B complements database A in relation to the 
complete database, that is, it comprises samples with RMSEGD≥ 

0.32. According to Table 1, the RMSEGD in this group of soils 
increased to 0.569, a value significantly higher than the corre-
sponding MVG and MVGm errors (0.410 and 0.291). The 
differences between the Kr(h) experimental data plots of data-
bases A and B reveal that the data plots of A (Figure 6, soils 
4650 and 4673 from UNSODA) tend to converge to the origin 
of the Cartesian axes [Kr(h = 1) = 1] asymptotically to the log 
h-axes, while those of B (Figure 7, soils 4092 and 4111) clearly 
do not. These four soils are common and consistent examples 
of the differences mentioned between the log-log graphs of the 
Kr(h) data of databases A and B. The GD model requires that 
the Gardner exponential model be valid close to saturation, 
which it is not consistent with the plot of the experimental pairs 
(log h, log Kr) of B close to saturation. This has a significant 
negative impact on the fitting of GD for these soils. For MVG, 
this impact is weakened by its multiplicative parameter, Kro 

(Equation (9)), which generally induces a better fitting of the 
MVG curves to the database B data in relation to the GD fitting, 
as shown in Figure 7. What can justify the abrupt variation of 
hydraulic conductivity close to saturation in soils from database 
B is the macropore flow phenomenon, which applies, as we 
have seen, only to a very limited suction range, in the order of 
0–10 cm. Another reason might be experimental inconsistencies 
involving saturated and unsaturated hydraulic conductivity 
measurements very close to saturation. However, our analysis 
does not require the characterization of the cause of this distinct 
behavior of Kr(h) close to saturation. For this reason, and to 
simplify the text, from this point on we assume that the abrupt 
depletion of conductivity close to Ks is due only to macropore 
flow. 

To better support the interpretation that the main cause of 
the poorer goodness of fit of the GD model is the abrupt varia-
tion of the Kr(h) curve measures close to saturation, we exclud-
ed the soils without Kr measures in the range h ≤ 10 cm (48 
samples) from the complete database. Two subsets were taken 
from the remaining database (105 samples): subset A' (55 sam-
ples), with Kr data greater than 0.10 (K “close” to Ks) in the 
range h ≤ 10 cm, and subset B' (50 samples), the complement 
of A' in relation to the 105 soils. In this way, subset A' has only 
samples that did not present a marked tendency of abrupt deple-
tion of Kr data close to saturation, while subset B' may have this 
tendency. A more objective criterion is thus established than 
that used in the previous paragraph to justify the worse perfor-

mance of the GD model with database B. In fact, we observed 
that 85% of the samples in A' and B' belong to databases A and 
B, respectively. That is, the goodness of fit of the GD model 
was adequate (RMSE < 0.32) for most of the samples where the 
Kr(h) data plot seems to converge asymptotically to the satura-
tion data (Figure 5c). When the asymptotic convergence is 
dubious (case of B'), the GD model was normally not accurate 
(RMSE ≥ 0.32). Soil 4070 (Figure 8) was an exception, as the 
convergence was asymptotic and the GD model was not accu-
rate (RMSE = 0.520). This sample was a peculiar case in the 
database, with an indication of only existing matrix flow in the 
whole suction range (without relevant macropore flow) and the 
proposed model did not fit its data accurately. The other sample 
in Figure 8 (soil 4670, the soil in Figure 1) is a more common 
example of A', which also had an indication of only matrix flow 
and the GD model was accurate (RMSE = 0.103). Table 1 
compares the RMSE values of A' and B' for models GD, MVG 
and MVGm. 

 
a)

b)

c)

 

Fig. 5. Probability distribution of the RMSE values of the samples 
taking into account models GD, MVG and MVGm. (a) Complete 
soil database; (b) Soil database A (RMSEGD < 0.32); (c) Soil data-
base A' (soils with Kr measures in range h ≤ 10 cm, with all Kr 
measures greater than 0.10 in this range). 
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Fig. 6. Experimental data of the Kr curve and GD 
and MVG fits for two soils from database A, 
where the GD model has a good quality of fit 
(RMSE < 0.32). 
 

  

 

 
 
 
 
 
 
 
 
 
 
 
 
Fig. 7. Experimental data of the Kr curve and GD 
and MVG fits for two soils from database B, 
where in general the GD model does not have a 
good quality of fit (RMSE ≥ 0.32). 
 

  

 

 
 
 
 
 
 
 
Fig. 8. Two examples of fitting of the GD model 
for database A', for which only matrix flow is 
expected to occur over the entire suction range. 
Soil 4670 is the most common example of GD 
model fitting when macropore flow is not rele-
vant, for which GD performed well. Soil 4070 is 
an exception in database A’, as the GD model 
was not efficient. 
 

 
Figure 9 shows the probability distributions of the reciprocal 

of parameter Kro of model MVG (Equation 9) for the complete 
database and for the 15 soils (10% of the complete database) 
with the worst performance for GD or MVG. In general, the 
more parameter 1/Kro is different from 1, the greater the ten-
dency of macropore flow. Figure 9 confirms the tendency of the 
soils with the worst performance with the GD model to have 
macropore flow, which does not happen in the soils with the 
worst performance for MVG, for which Kro = 1 predominates. 
In this last case, 11 of the 15 soils are from database A 
(RMSEGD < 0.32), that is, they present only matrix flow in the 
whole suction range, without signs of relevant macropore flow. 
This indicates a difficulty for the model MVG to represent 
hydraulic conductivity data in the matrix flow condition, which 
has already been shown in the literature (Schaap and Leij, 
2000; Schaap and van Genuchten, 2006; van Genuchten and 
Nielsen, 1985; Vogel et al., 2001), and, in fact led to the devel-

opment of model MVGm. Also, because MVG imposes a linear 
representation to the log Kr vs. log h graph at great suction 
ranges, in contrast to the GD model, the MVG model is unable 
to give a good fitting for soils that have a curved log Kr vs.  
log h data plot at those suction ranges. This is the case of soils 
4650 (Figure 6) and 4661 (Figure 2), with RMSEMVG values of 
0.659 and 0.581, respectively, in contrast to the corresponding 
RMSEGD values of 0.303 and 0.164. In agreement, Table 2 
confirms the best performance of the GD model in comparison 
to the MVG and MVGm models with all textural class groups 
when there is only the matrix flow (with an insignificant excep-
tion for Loams). The performance of the GD model with the 
full database was intermediate to those of the two other models 
with all groups. 

Figure 10 shows the calculations of the ME errors for mod-
els GD and MVG in the nine suction intervals mentioned in the 
beginning of this section, considering the complete database of  
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Fig. 9. Probability distribution of parameter 1/Kro of model MVG 
(Equation (9)) for the complete database and the 15 soils with the 
worst performance with models GD and MVG. 

 
Table 2. RMSE values per textural class for the complete database 
and the database of the soils that only presented matrix flow in the 
whole suction range (without relevant macropore flow). 
 

 
Summarized 
classes 

Number  
of Soils 

Mean RMSE 

 
GD 
model 

MVG 
model 

MVGm 
model 

C
om

pl
et

e 
D

at
ab

as
e 

Sands 68 0.360 0.473 0.321 
Loams 27 0.373 0.497 0.225 
Silts 40 0.431 0.444 0.263 
Clays 18 0.338 0.459 0.244 
All 153 0.378 0.468 0.280 

D
at

ab
as

e 
A

 
(R

M
S

E
G

D
 <

 0
.3

2)
 

Sands 37 0.203 0.465 0.286 

Loams 15 0.179 0.599 0.171 

Silts 15 0.187 0.498 0.316 

Clays 10 0.167 0.679 0.281 

All 77 0.191 0.525 0.269 
 
our study (model GD) or that of Schaap and van Genuchten 
(2006) (model MVG), both with approximately the same num- 
 

ber of samples (153 and 235 samples, as described previously). 
We can see that the GD errors were generally smaller or greater 
(in absolute value) than the MVG errors in suction intervals 1–
32 cm and 32–15000 cm, respectively. When only soils without 
relevant macropore flow were considered (database A), the ME 
errors of GD were nearly null, that is, the model proposed de-
termined the Kr(h) curve without a marked bias over the whole 
suction range. 
 
Evaluation of the model constants 

 
In this subsection we considered the parameters and indexes 

previously described concerning the model GD in relation to 
the 77 soils in database A (RMSEGD < 0.32), as these constants 
for database B (RMSEGD ≥ 0.32) usually refer to a poor model 
optimization quality and, therefore, have an inaccurate mean-
ing. We will describe and comment how these parameters and 
indexes vary in A and in the four textural class groups of A 
(Table 3 and Figure 11, respectively). We acknowledge that 
this is a preliminary statistical analysis due to the reduced num-
ber of samples. Table 3 presents the soil constants in increasing 
order of their coefficients of variation (CV). Coefficient β was 
not included in Figure 11 for lack of interest for analysis. 

Table 3 indicates that there are four levels of variability of 
soil constants in A: f(β) and Sk (CV ≅ 37%), ho and λ (CV ≅
115%), Ks and Ko (CV ≅ 235%), β (CV = 319%). As already 
mentioned, parameter f(β) describes the shape of the h > ho 
branch of the Kr(h) curve better than parameter β does. The fact 
that β is more variable than f(β) by approximately one order of 
magnitude (according to Figure 4, this occurs mainly because 
f(β) is little sensitive to variations of β when f(β) tends to 1) is 
another advantage to use f(β) rather than β as a curve shape 
parameter. We can see in Figure 11a that the mean linearization 
fractions varied little in the four textural class groups, around 
0.67, which indicates a little dependence of f(β) from the soil 
granulometry. The f(β) maxima tended to 1, in agreement with 
the situations for which the Wind model (h > ho) was particular-
ized. Very small f(β) [f(β) < 0.3] values generally corresponded 
to samples with Kr measures in a very limited suction range.  
 

 

Table 3. Means and coefficients of variation of the GD model soil constants for database A (77 soils), where: f(β) is the linearization frac-
tion, Sk - conductive depletion index, ho - transition suction, λ - macroscopic capillary length, Ks - saturated hydraulic conductivity, Ko - 
reference unsaturated hydraulic conductivity, and β - conductive depletion coefficient. 
 

 f(β) Sk ho (cm) λ (cm) Ks (cm/d) Ko (cm/d) β 
mean 0.672 1.59 52.8 14.5 184 6.20 20.9 
CV (%) 36.1 37.8 113 116 225 243 319 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
Fig. 10. Mean errors (ME) of models GD 
and MVG in the nine suction intervals 
considered (lines) and number of meas-
urements (bars) in each interval. For 
MVG, we considered the Schaap and van 
Genuchten (2006) database, with 235 
soils (results taken from the authors' 
Figure 4). For GD, we considered the 
complete database of our study (153 
soils), as well as database A (77 soils) 
with only the soils without signs of rele-
vant macropore flow. 
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a)  

 
b) 

 
    c)  

 
Fig. 11. Means, coefficients of variation (CV) and values of the 
GD model soil constants for the four textural class groups in data-
base A: Clays - 10 soils, Loams -15 soils, Sands -37 soils, Silts - 15 
soils. (a) f(β), Sk; (b) log Ks (cm/d), log Ko (cm/d) (means and CVs 
of the logarithmic values); (c) ho (cm), λ (cm). 

 
Soils 4650 and 4673 in Figure 6 are examples of mean and high 
values, [f(β) = 0.67] and [f(β) = 0.95], respectively, of the line-
arization fraction, which indicates that the situation of the cur-
vilinear shape of the Y(X) (for h > ho) curve of the first soil is 
frequent in database A. Examples of more extreme situations of 
the parameter are shown in Figure 12: soil 2561 [f(β) = 0.996] 
and soil 2743 [f(β) = 0.48]. Soils 4673 (Figure 6) and 2561 
(Figure 12) illustrate the quasi-linear and linear branches h > ho 

of Y(X), respectively. 
The Sk index is the GD model constant better related to the 

global depletion capacity of the hydraulic conductivity curve, 

as it is a multiplicative value of Y = log Kr in the entire suction 
range, according to Equation (20). Another constant directly 
related to the depletion potential of the Kr(h) curve is f(β), but 
concerning only its h > ho branch. That is, the greater the Sk and 
f(β) values are, the greater the depletion capacity of Kr(h). In-
dex Sk is also proportional to the absolute value of the dY/dX 
slope at the Y(X) inflection point (Equation (19); Figures 2 and 
12), at the same time that it is the absolute value of Y at this 
point (Equation (18); Figures 2 and 12), thus being a soil struc-
tural hydraulic parameter. As seen, another parameter with this 
nature is the macroscopic capillary length, λ, related to Sk by 
Equation (18). However, λ relates only to the branch h < ho of 
Y(X) and its use with the GD model is unnecessary when the 
values of Sk and ho are known (Equation (20)). In Figure 11a, 
the mean value of Sk varied between the textural class groups, 
indicating a certain dependence from the soil granulometry: 
samples in the Sands group (sand, loamy sand, sandy loam, 
sandy clay loam) tended to present values (Sk = 1.79) greater 
than those of the other groups. This confirms the general notion 
that in unsaturated conditions (but not very close to saturation), 
sandy soils tend to be less permeable than the others (Hillel, 
1998). Sk had the smallest mean value in the Loams (loam and 
clay loam) group (Sk = 1.28). The maxima and minima for the 
four textural class groups were approximately 2.8 and 0.75, 
respectively. Figure 12 presents examples of Y(X) curves for 
low (Sk = 0.90, soil 2743), medium (Sk = 1.45, soil 4670) and 
high (Sk = 2.13, soil 2561) depletion index conditions. Soil 
2561 is a sand with a high depletion potential for the Kr(h) 
curve; K decreases by eight orders of magnitude between satu-
ration and the suction value of 350 cm. In addition to Sk, its f(β) 
parameter is also high [f(β) = 0.996], which contributes to an 
increase in the conductive depletion. Sample 2743 is an oppo-
site example: a clay loam with a low depletion potential. In this 
case, for the suction value of 160 cm, the K value decreased by 
only two orders of magnitude in relation to the saturation. Ex-
trapolating the GD model to this soil at suctions greater than 
160 cm, with both small Sk and f(β) values, the conductive 
depletion must remain very low, as indicated in Figure 12. Soil 
4670 is an intermediate example of the depletion potential of 
the Y(X) curve in relation to the other two soils. 

The reference unsaturated hydraulic conductivity, Ko = 
K(ho), was calculated with Equation (22). It is a soil physical 
quality parameter, as it depends exclusively on the saturated 
hydraulic conductivity (Ks) and the Sk index. In the three soil 
examples above, the respective Ks and Ko of 2561 (sand), 2743 
(clay loam) and 4670 (silt) are (in cm/d): (3020, 23), (320, 40), 
(89, 3.0), which indicates a distinct level and ordination of 
reference unsaturated hydraulic conductivity values in relation 
to the saturated values. Figure 11b illustrates the distributions 
of the log Ks and log Ko values for the four textural class 
groups. The geometric mean value (4.40 cm/d) of Ko of the 
Loams group was approximately three times larger than the 
geometric mean (1.30 cm/d) of the Sands group and one order 
of magnitude greater than those of the other two groups. As the 
transition suction (ho) normally corresponded to a wet soil 
situation (mean ho = 52.8 cm, Table 3), we conclude that in the 
wet range (but not very close to saturation) of database A, the 
soils from the Loams group tend to have a greater hydraulic 
conductivity in comparison to the other soils. 

Among the three parameters, ho, λ and Sk, only two are need-
ed for the calculation of Kr(h), because of Equation (18). Figure 
11c shows the distribution of the ho and λ values in the four 
textural class groups, which shows that with only one exception 
(λ in the Loams group), these parameters were much more 
variable than the third parameter; their coefficients of variation  
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Fig. 12. Three examples of GD model fitting involving soils with 
low (Sk1 = 0.90, soil 2743), mean (Sk2 = 1.45, soil 4670) and high 
(Sk3 = 2.13, soil 2561) Sk indexes from database A. The other pa-
rameters are: soil 2743 (ho1 = 10 cm, λ1 = 4.8 cm, f1(β) = 0.48), soil 
4670 (ho2 = 140 cm, λ2 = 41.5 cm, f2(β) = 0.83), soil 2561 (ho3 = 20 
cm, λ3 = 4.1 cm, f3(β) = 0.996). The transition suction values of the 
three curves are indicated. The tangent at the inflection of the Y(X) 
curve is shown only for soil 4670. 
 

 

in general were at least twice as great as those of Sk. This might 
indicate a greater difficulty in the indirect estimation of ho and λ 
using pedofunctions rather than in the estimate of Sk. The ho and 
λ mean values also seem to vary with soil granulometry. They 
were greater in groups Sands and Silts, smaller in the other two 
groups and maximum in the Silts group (ho = 74 cm, λ = 21.8 
cm). The transition suction value was limited to the 10–300 cm 
range, showing that the experimental determination of the Xo, 
Yo coordinates of the inflection point of Y(X), of great relevance 
in the characterization of the GD model parameters, must be 
restricted to the wet range of the hydraulic conductivity curve 
(where suction can be monitored by tensiometry), which is 
greatly advantageous. This ho range is consistent with the suc-
tion values at the inflection points of the (log Kr) vs (log h) 
curves of Figures 2 and 3 in Peters and Durner (2008). Parame-
ter λ was within range 2.0–93 cm, with mean value of 14.5 cm, 
which is consistent with the literature (Communar and Fried-
man, 2014; Reynolds, 2016; White and Sully, 1987). This pa-
rameter is commonly considered a measure of the soil dynamic 
capillarity. Usually, medium and fine textured soils are consid-
ered to have greater λ values, and coarser soils, smaller values 
(Communar and Friedmand, 2014, Reynolds, 2016). However, 
in database A, Sands tended to have a greater λ than Clays and 
Loams (Figure 11c). Yet, White and Sully (1987) admitted that 
soil granulometry should not influence this parameter marked-
ly. On the other hand, the small number of samples in database 
A makes a more judicious analysis difficult. It is also common-
ly accepted that soils with greater λ values (more "capillary") 
are less depletive in terms of Kr(h) than those with smaller λ 
values. This holds only in the suction range to which the Gard-
ner exponential model applies. In wider suction ranges, accord-
ing to Equation (18), the depletion potential of Kr(h) (Sk index) 
also depends on the value of ho, when compared to λ. This is the 
case of sand 2561 in Figure 12, which is much more depletive 
than clay loam 2743, despite their very close λ values, what is 
justified by their very distinct ho values, in a relative compari-
son (ho = 20 cm and 10 cm, respectively). This is also the case 
of silt 4670 in Figure 12, globally more depletive than soil 
2743, despite its far greater "dynamic capillarity" (λ = 41.5 cm 
and 4.8 cm, respectively). 
 
CONCLUSION 

 
The model proposed, called the Gardner dual model (GD 

model) is, in fact, a natural extension of the Gardner exponen-
tial model of hydraulic conductivity (Equation 2), since the 
extension equation (Equation 10), for h > ho, expresses the 
same law of exponential decay of hydraulic conductivity with 
suction, only changing the decimal scales of h and Kr (Equation 
2) by the corresponding logarithmic scales (Equation 10). The 
transition suction from the decimal to the logarithmic law, ho, 

might result from a change of soil hydraulic behavior as the 
porous space becomes drier, as suggested by Peters and Durner 
(2008). The GD model was more accurate than the two-
parameter (Kro and L) Mualem-van Genuchten model (MVG 
model) and the corresponding modified MVG model (MVGm 
model) in the representation of the Kr(h) curve in 77 soils that 
did not present relevant macropore flow. In this case, the mean 
RMSE of the model proposed was 64% smaller (0.191 to 
0.525) and 29% smaller (0.191 to 0.269) than those of the 
MVG and MVGm models, respectively; the GD model also 
calculated Kr(h) more efficiently than the MVG model in all 
suction ranges. The remaining 76 soils generally presented 
signs of relevant macropore flow, which tended to lead to poor-
er performance of the GD model in all suction ranges and to a 
generally lower accuracy than those of the other two models. 
We conclude that the mathematical representation of the GD 
model was more adequate than those of the MVG and MVGm 
in soils with only matrix flow in the whole suction range. On 
the other hand, the GD model is not recommended for soils 
with dual permeability close to saturation. Therefore, modify-
ing the GD model to include the effects of macropore flow is an 
interesting possibility. Another issue that deserves investigation 
is the determination of the suction upper limit beyond which the 
GD model is not valid. In this paper the model was evaluated 
for suctions smaller than 15000 cm. 

Like models MVG and MVGm, the proposed model has two 
degrees of freedom, although it requires three parameters for its 
calculations. One of the parameters is the conductive depletion 
coefficient, (β), or, alternatively, the linearization fraction 
[f(β)], which are dimensionless shape parameters of the hydrau-
lic conductivity curve, as shown in Figure 3. The other two 
model parameters depend strictly on the coordinates Xo, Yo of 
the inflection point of the Y(X) curve, where X = log h, Y = log 
Kr. They are the transition suction, ho (cm), and the conductive 

depletion index, Sk (dimensionless). The first is the suction at 
the inflection of the Y(X) curve, the limit suction value of the 
range in which the classic Gardner exponential model is appli-
cable. The second parameter, Sk, is the absolute value of log Kr 
at ho, with the definition of Sk similar to that of the S index of 
the water retention curve. The macroscopic capillarity length λ 
(cm), a physical parameter known in the infiltration literature, 
can be calculated from ho and Sk. Thus, this study has demon-
strated that the determination of the GD model parameters is 
highly dependent on the measurement of the Y(X) curve at 
suction values close to its inflection (see also Equation (28)), 
which is an experimental advantage, since the transition suc-
tion, ho, has been demonstrated to be within a wet range (ho = 
10 to 300 cm). This must favor the estimation of the hydraulic 
conductivity in a wide suction range after the optimization of 
the GD model parameters using only the experimental data in 
the wet range with suction values around ho. 
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