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Abstract: The bio-chemical and physical characteristics of a river are directly affected by water temperature, which 
therefore affects the overall health of aquatic ecosystems. In this study, long term variations of river water temperatures 
(RWT) in Kupa River watershed, Croatia were investigated. It is shown that the RWT in the studied river stations in-
creased about 0.0232–0.0796ºC per year, which are comparable with long term observations reported for rivers in other 
regions, indicating an apparent warming trend. RWT rises during the past 20 years have not been constant for different 
periods of the year, and the contrasts between stations regarding RWT increases vary seasonally. Additionally, multi-
layer perceptron neural network models (MLPNN) and adaptive neuro-fuzzy inference systems (ANFIS) models were 
implemented to simulate daily RWT, using air temperature (Ta), flow discharge (Q) and the day of year (DOY) as predic-
tors. Results showed that compared to the individual variable alone with Ta as input, combining Ta and Q in the MLPNN 
and ANFIS models explained temporal variations of daily RWT more accurately. The best accuracy was achieved when 
the three inputs (Ta, Q and the DOY) were included as predictors. Modeling results indicate that the developed models 
can well reproduce the seasonal dynamics of RWT in each river, and the models may be used for future projections of 
RWT by coupling with regional climate models. 
 
Keywords: Climate change; Machine learning models; River water temperature. 

 
INTRODUCTION 
 

River water temperature (RWT) is one of the most important 
indicators to determine the overall health of aquatic ecosystems 
since it affects various physical and biochemical processes in 
rivers (Rice and Jastram, 2015). For example, RWT significant-
ly impacts dissolved oxygen dynamics (Cox and Whitehead, 
2009), the formation of potentially toxic ammonia (Kim et al., 
2017), and the evolution and distribution of aquatic organisms 
(Fullerton et al., 2018). Cingi et al. (2010) stressed that relative-
ly small increases in RWT during the spawning period of Core-
gonus lavaretus may lead to fatal impacts on its recruitment and 
population persistence.  

Understanding the factors impacting RWT and how thermal 
regimes have changed in the past and how they can be modified 
in the future is therefore of great significance for the sustainable 
management of river ecosystems. This is especially important 
in recent decades considering the rising of air temperatures due 
to climate change (van Vliet et al., 2013), the impacts of ex-
treme climate events such as heatwaves (Feng et al., 2018; 
Schär et al., 2004) and anthropogenic activities such as land use 
change (DeWeber and Wagner, 2014; LeBlanc et al., 1997), 
urbanization (DeWeber and Wagner, 2014; Chen et al., 2016) 
and damming (Ayllón et al., 2012). Rising RWT is strongly 
related to climate warming with various time scales for differ-
ent type of rivers, which have been reported in a lot of studies 
(Bonacci et al., 2008; Chen et al., 2016; Gooseff et al., 2005; 
Null et al., 2013; Webb et al., 2003). For example, Chen et al. 
(2016) indicated that RWT in the Yongan watershed increased 
by 0.029−0.046°C year–1 due to a ~0.050°C year–1 increase of 
air temperature over the 1980−2012 period.  

Although the air-water temperature relationship is generally 
strong, the strength of such a relationship varies regionally and 
temporally, and can be highly site specific due to additional 
influences from local hydrology and human activities 
(DeWeber and Wagner, 2014; Zhu et al., 2019). It is commonly 
observed that RWT is inversely related to river discharge, and a 
global assessment indicated that a decrease in river discharge 
by 20% and 40% would exacerbate water temperature increases 
by 0.3°C and 0.8°C on average, respectively (van Vliet et al., 
2011). Additionally, it was found that river discharge played a 
relevant role mainly in snow-fed and regulated rivers with 
higher altitude hydropower reservoirs, while it played a minor 
role in lowland rivers for RWT dynamics (Zhu et al., 2019). 
Depending on the river type and time scale, the air-water tem-
perature relationships can be explained by linear or logistic 
functions (Hadzima-Nyarko et al., 2014; Webb et al., 2003), 
machine learning models (DeWeber and Wagner, 2014; 
Hadzima-Nyarko et al., 2014; Piotrowski et al., 2015; Zhu et 
al., 2019), and hybrid statistically and physically based models 
(Toffolon and Piccolroaz, 2015). 

Kupa River watershed is one of the most important water re-
sources in Croatia, and quantifying thermal dynamics in this 
particular river catchment is thus of great significance to water 
resources managers. Previously, Bonacci et al. (2008) analyzed 
water temperature regime of the Danube and its tributaries in 
Croatia, including the main stem of the Kupa River. However, 
the RWT data from the main stem hydrological stations were 
only limited to 1951–2003. In this study, the latest RWT and 
flow discharge data from 6 hydrological stations on the main 
tributaries of Kupa River were evaluated to describe and identi-
fy changes in the thermal regime of the watershed. In addition, 
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we developed predictive water temperature models using the 
multilayer perceptron neural network (MLPNN) and adaptive 
neuro-fuzzy inference system (ANFIS) machine learning tools 
following their use by Zhu et al. (2019) for the Drava River. In 
the Drava River model (Zhu et al., 2019), the components of 
the Gregorian calendar (CGC) which include year, month, and 
day were used as suggested by Heddam (2016) and Heddam 
and Kisi (2017) for water quality modelling. For RWT forecast-
ing, the day of year (DOY) was used in the forwards and back-
wards stepwise model for Scotland's Atlantic salmon rivers 
(Jackson et al., 2018). In this study, air temperature, river dis-
charge, and DOY were used as inputs to predict RWT. The 
objective of this study is to analyze thermal regimes of rivers in 
the Kupa River watershed, develop models which can be used 
for future RWT projections and further test the performance of 
MPLNN and ANFIS for predicting water temperatures under 
different hydrologic conditions than those of Zhu et al. (2019). 
 
MATERIALS AND METHODS  
Study area 

 
The study covers the Kupa River basin, situated between 

Croatia (86% of total basin area) and Slovenia (14% of total 
basin area) in the hinterland of the Northern Adriatic Sea (Fig. 
1). The region is characterized by complex karst hydrologi-
cal/hydrogeological behavior common to the deep and devel-
oped Croatian Dinaric karst, resulting in a weakly defined 
hydrological drainage area (Bonacci and Andrić, 2010). A mix 
of continental and Mediterranean climate influences the upper 
part of the basin, while Pannonian climate is the most important 
in the lower part. The patterns of land use in the Kupa River  
 

basin include mountains (26%), forests (33%), pasture (26%) 
and agriculture (15%) (Frančišković-Bilinski et al., 2012). 
Hydrological parameters (water temperature and river dis-
charge) were regularly monitored at six gauging stations in the 
Kupa River selected for this study. Table 1 presents the main 
characteristics of the 6 studied gauging stations (station name, 
station elevation, drainage area, period of available data for 
water temperature and flow discharge). River water temperature 
data was monitored once-daily at 7.30 am. Daily river dis-
charge was calculated based on measurements of water level 
using the water level-river discharge RK method. Daily average 
air temperatures (Ta) were obtained from the nearby meteoro-
logical station in Ogulin for 1990–2017.  

 
Analysis methods 

 
In this study, annual variations of Ta and Tw in each river sta-

tion were analyzed using linear models with year as effect for 
trend analysis. The correlations between the RWT increase 
rates and annual averaged flow discharges, and relationships 
between the mean annual RWT and the station elevation for the 
six river stations were investigated using linear models. Chang-
es in Ta, Tw and Q for annual and seasonal average values were 
compared between five years averages for two sub-periods 
(1996–2000 and 2011–2015). Since the Čabranka River only 
has data till 2008, data from 1990–1994 and 2004–2008 was 
compared. The seasonal dynamics of Tw, Ta and Q are analyzed 
through the climatological year, which is defined by averaging 
for each day of the calendar year all measurements available 
over the observation period for that same specific day (Zhu et 
al., 2019). 

 
Table 1. Main characteristics of the 6 studied water temperature gauging stations in the Kupa River watershed. 
 

River name Station name Elevation  
(m a.s.l.) 

Drainage area  
(km2) 

Period of available data Long term averages  
Tw    Q 

Čabranka  Zamost 2 297.540 134.451a Tw Q: 1990–1999 2002–2008 8.14 3.50 
Donja Dobra Stative Donje 116.456 49.344a Tw Q: 1994–2017  12.34  37.28 
Donja Mrežnica Mrzlo Polje 113.967 257.953a Tw Q: 1990–2017  13.80  26.14 
Gornja Dobra Luke 353.668 162.00b Tw Q: 1991–1992 1994–2015  9.01  6.78 
Korana Slunj Uzvodni 212.167 572.341a Tw Q: 1996–2004 2007–2017  12.41  9.97 
Slunjčica Rastoke 226.899 273.00b Tw Q: 1996–2017  10.78  8.32 

  

Tw: water temperature; Q: flow discharge; a Hydrological drainage area, b Topographical drainage area 

 
Fig. 1. Location map indicating the studied river catchment. 
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Machine learning models  
 
In the present study, the MLPNN and ANFIS models ap-

plied previously by Zhu et al. (2019) were used. For the 
MLPNN model, the weights (wij) and bias levels (δ0) are the 
only parameters that need to be adjusted when the structure of 
the neural network has been defined (number of layers, number 
of neurons in each layer, activation function for each layer). 
Modification of these parameters will change the output values 
of the designed network. The weights (wij) and bias levels (δ0) 
are iteratively adjusted during model training to minimize error. 
The root mean squared error (RMSE) and the mean squared 
error (MSE) is often used to define the network error. Similar to 
Zhu et al. (2019), the MLPNN model has one hidden layer with 
sigmoidal activation function, and one output layer with linear 
activation function. We tried to vary the number of neurons in 
the hidden layer from 10 and 13, and it was found that there is 
no any significant improvement for model performance, thus, 
the number of neurons in the hidden layer is set as 10. To de-
velop ANFIS model, it is important to create the fuzzy rule 
base. The number of fuzzy rule for any ANFIS model is direct-
ly related to the identification method used for partitioning the 
input space. According to the previous research results (Zhu et 
al., 2019), the fuzzy c-means clustering (FC) was used. When 
using FC method, the number of fuzzy rules is equal to the 
clusters and fixed by the user. Detailed information about the 
two models can be found in Zhu et al. (2019). 

In this study, both the scripts of the MLPNN and ANFIS 
models were implemented in Matlab.  

Besides air temperature (Ta) and flow discharge (Q), the day 
of the year (DOY) was also used as input variable. Three 
MLPNN and three ANFIS models were developed with the 
following predictors: (i) version 1 with only one input variable 
(Ta), (ii) version 2 with two inputs variable (Ta and Q) and (iii) 
version 3 with three inputs (Ta, Q and the DOY). For the six 
river stations, data period for model training and testing are 
respectively: (1) 1990–1999 and 2002–2008 for Čabranka 
River, (2) 1994–2009 and 2010–2017 for Donja Dobra River, 
(3) 1990–2007 and 2008–2017 for Donja Mrežnica River, (4) 
1991–1992 plus1994–2007 and 2008–2015 for Gornja Dobra 
River, (5) 1996–2004 plus 2008–2010 and 2011–2017 for Ko-
rana River, and (6) 1996–2009 and 2010–2017 for Slunjčica 
River. 
 
Model evaluation metrics 

 
Model performances were evaluated using the following 

four indicators: the coefficient of correlation (R), the Willmott 
index of agreement (d), the root mean squared error (RMSE), 
and the mean absolute error (MAE). 
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where n is the number of data samples, Oi is the observed and 
Pi is the predicted water temperatures. Om and Pm are the aver-
age values of Oi and Pi. 

 
RESULTS AND DISCUSSION 
Dynamic variations of water temperature and air  
temperature 

 
The annual variations of Ta and Tw are presented in Fig. 2. 

Air temperatures increased about 0.0449ºC year–1, while RWT 
increases differed between the studied river stations from 
0.0232–0.0796ºC per year. The RWT increase rate (ºC year–1) 
negatively correlated with annual averaged flow discharge (Fig. 
3). The observed RWT increases are comparable with long term 
observations reported for rivers in China (0.029–0.046ºC year–1, 
Chen et al. 2016), USA (0.009–0.077ºC year–1, Isaak et al., 
2012; van Vliet et al., 2013; Rice and Jastram, 2015) and Eu-
rope (0.006–0.18ºC year–1, Albek and Albek, 2009; Harden-
bicker et al., 2017; Lepori et al., 2014; Markovic et al., 2013; 
Moatar and Gailhard, 2006; Orr et al., 2015; Pekárová et al., 
2011; Žganec, 2012). 

Fig. 4 presents changes in Ta, Tw and Q for annual and sea-
sonal average values. For all the rivers, annual averaged Ta, Tw 
and Q increased during the two sub-periods (1996–2000 and 
2011–2015) except for the decreased Q in the Slunjcica River. 
With an increase of 0.94ºC for air temperature, the annual mean 
of RWT increased about 0.146–1.287ºC. Increases in annual 
mean RWT was highest for the Korana River (1.287ºC) and 
least for the Donja Dobra River (0.146ºC). Repeating this anal-
ysis for different seasonal quarters revealed that RWT rises 
during the two sub-periods have not been constant for different 
periods of the year, and the contrasts between river stations 
regarding RWT increases vary seasonally. For the Čabranka 
river (Fig. 4(a)), though air temperature in January-March and 
July-September decreased, RWT in different seasons still in-
creased between 0.386 and 0.878ºC. For the other five rivers, 
the greatest rises in average RWT ranged from 0.626 to 
5.221ºC. Particularly, RWT increases in July–September ex-
ceeded 5.0ºC and 2.0ºC for the Korana River (Fig. 4(e)) and the 
Gornja Dobra River (Fig. 4(d)) respectively.  

Fig. 5 presents a linear relationship between the mean annual 
RWT and the station elevation for the six river stations. Results 
showed that the mean annual RWT negatively correlated with 
station elevation, which is consistent with previous analysis for 
river stations in the main stem of the Kupa River (Bonacci et al., 
2008). However, the mean annual RWT presented no significant 
correlation with the drainage area listed in Table 1 (the coeffi-
cient of correlation R = 0.36), which may be explained by the 
complex karst hydrological/hydrogeological behavior and weakly 
defined hydrological drainage areas (Bonacci and Andrić 2010). 

The seasonal dynamics of water temperature (Tw), air tem-
perature (Ta) and flow discharge (Q) are presented in Fig. 6 
through the climatological year. River flow mainly was gener-
ally higher in the spring and winter period for the six rivers, 
when air and water temperatures are lower. However, river 
flow is generally low when air temperatures are high, which 
may further intensify RWT increases. The response of Tw to 
changes in Ta is almost linear for the Donja Dobra River (Fig. 
6(b)), the Donja Mrežnica River (Fig. 6(c)) and Korana River 
(Fig. 6(e)). Typically for the Donja Mrežnica River (Fig. 6(c)),  
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Fig. 2. Annual variations of Ta and Tw: (a) Ta in Ogulin, (b) Tw in Čabranka, (c) Tw in Donja Dobra, (d) Tw in Donja Mrežnica, (e) Tw in 
Gornja Dobra, (f) Tw in Korana and (g) Tw in Slunjčica.   

 

 
 
Fig. 3. Linear relationship between increase rate of river temperature and annual averaged flow discharge for the six rivers (1-Čabranka, 2-
Donja Dobra, 3-Donja Mrežnica, 4-Gornja Dobra, 5-Korana, 6- Slunjčica). 

 
Tw in the climatological year were larger than Ta all the year 
round. The Čabranka River (Fig. 6(a)), Gornja Dobra River 

(Fig. 6(d)), and Slunjčica River (Fig. 6(f)) presented a clear 
flattening of the seasonal pattern of Tw, especially in summer.  
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Fig. 4. Changes in Ta, Tw and Q between two sub-periods for annual and seasonal average values (J-M: January–March; A-J: April–June; J-
S: July–September; O-D: October–December): (a) Čabranka, (b) Donja Dobra, (c) Donja Mrežnica, (d) Gornja Dobra, (e) Korana, (f) 
Slunjčica. 

 
 

Fig. 5. Linear relationship between mean annual river temperature and station elevation for the studied river station in each river (1-
Čabranka, 2-Donja Dobra, 3-Donja Mrežnica, 4-Gornja Dobra, 5-Korana, 6- Slunjčica). 
 
Machine learning models for modeling daily river water 
temperature 

 
Models performance was similar but MLPNN model per-

formed slightly better (Table 2), conforming the previous con-
clusion of Zhu et al. (2019). Compared to the models with only 
Ta as input (version 1), combining Ta and Q in the version 2 
models explained temporal variations of RWT more accurately 
(Table 2), especially for the Donja Dobra, Donja Mrežnica and 
Slunjčica rivers. For example, for the Slunjčica River, the 
MLPNN2 model decreased the RMSE and MAE values of 
MLPNN1 by 25.90% and 26.97% in the training phase, and 
14.97% and 17.48% in the testing phase. By including DOY as 
model input, modeling performances dramatically improved 
(Table 2), which indicates that the seasonal component DOY 
plays an important role for RWT forecasting. For the Donja 

Mrežnica River, the ANFIS2 model decreased the RMSE and 
MAE values of ANFIS1 by 18.58% and 23.00% in the training 
phase, and 21.30% and 25.64% in the testing phase. Generally, 
the two models performed well for RWT predictions. For mod-
el version 3, in the testing phase, R and d values varied between 
0.907 and 0.978, and 0.951 and 0.989 respectively, and RMSE 
and MAE values ranged from 0.872 to 1.793ºC, and 0.627 to 
1.435ºC. The modeling performances are comparable with that 
for the two river stations in the Drava River that had RMSE 
varying between 1.227 and 1.69ºC (Zhu et al., 2019). Fig. 7 
shows the variation of annual RMSE values (MLPNN3) for the 
whole modeling period in each river, which indicates that the 
annual RMSE values varied between years. The averaged 
RMSE values for the studied time periods were 1.077, 1.419, 
1.285, 1.356, 1.583 and 0.794ºC for the Čabranka, Donja  
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Fig. 6. Climatological (reference) year for the six rivers: (a) Čabranka, (b) Donja Dobra, (c) Donja Mrežnica, (d) Gornja Dobra, (e) Korana, 
(f) Slunjčica. 

 

 
Fig. 7. Variation of annual RMSE values for the MLPNN3 models. 

 
Dobra, Donja Mrežnica, Gornja Dobra, Korana, and Slunjčica 
respectively. The RMSE values compare reasonably with that 
in Jackson et al. (2018) (1.57ºC) and Sohrabi et al. (2017) 
(1.25ºC), and far better than that of Temizyurek and Dadaser-
Celik (2018) (2.10–2.64ºC). Fig. 8 presents the modeling per-
formances of the MLPNN3 for the climatological year at the six 
river stations. As is shown, the MLPNN3 model can well re-
produce the seasonal dynamics of RWT in each river. The 
further test of modeling methods used in our previous research 
(Zhu et al., 2019) indicate that the models can be successfully 
applied for RWT forecasting for rivers characterized by differ-
ent hydrological conditions. The models can be further coupled 
with regional climate models for future projections of RWT in 
the Kupa River watershed, which can help to inform water 
resources management in Croatia. 

CONCLUSIONS 
 
In this study, long term changes of RWT from six river sta-

tions in Kupa River watershed, Croatia were investigated. Re-
sults showed that RWT in the six studied river stations in-
creased about 0.0232–0.0796ºC per year with an increasing 
trend of air temperatures of 0.0449ºC year–1, indicating an 
apparent warming trend. The results are comparable with long 
term observations for rivers in other regions (China, USA and 
Europe etc.). With an increase of 0.94ºC for air temperature, the 
annual mean of RWT increased about 0.146–1.287ºC in the two 
sub-periods (1996–2000 and 2011–2015). Results for different 
seasonal quarters revealed that temperature rises during the two 
sub-periods have not been constant for different periods of the 
year, and the contrasts between stations regarding temperature 
increases vary seasonally. In addition, MLPNN and ANFIS 
models were developed to predict daily RWT, using Ta, Q and 
DOY as model inputs. Results showed that compared to the 
model version 1 with Ta only, adding Q better explained tem-
poral variations of daily RWT. Using the three inputs as predic-
tors (Ta, Q and the DOY) yielded the best accuracy among all 
the developed models. RMSE and MAE values ranged from 
0.872 to 1.793ºC, and 0.627 to 1.435ºC respectively in the 
testing phase. Modeling results indicate that the developed 
models can well reproduce the seasonal dynamics of RWT. For 
further research, the models can be coupled with regional cli-
mate models for future projections of RWT. 
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Table 2. Performances of different models in modelling water temperature (Tw °C) for the studied rivers in the Kupa River watershed. 
 

River name Model version Training   Testing  
 R d RMSE (°C) MAE (°C) R d RMSE (°C) MAE (°C) 

Čabranka 

MLPNN3 0.956 0.977 0.986 0.774 0.941 0.970 1.262 0.979 
MLPNN2 0.916 0.955 1.342 1.037 0.908 0.953 1.585 1.242 
MLPNN1 0.882 0.934 1.576 1.261 0.884 0.937 1.715 1.370 
ANFIS3 0.954 0.976 1.005 0.787 0.943 0.971 1.233 0.965 
ANFIS2 0.918 0.956 1.330 1.020 0.908 0.953 1.571 1.230 
ANFIS1 0.882 0.934 1.577 1.261 0.887 0.938 1.699 1.361 

Donja Dobra 

MLPNN3 0.972 0.986 1.406 1.047 0.964 0.982 1.460 1.083 
MLPNN2 0.935 0.966 2.118 1.545 0.919 0.957 2.167 1.619 
MLPNN1 0.890 0.939 2.724 2.061 0.874 0.931 2.659 2.040 
ANFIS3 0.972 0.985 1.416 1.056 0.963 0.981 1.469 1.088 
ANFIS2 0.935 0.966 2.117 1.544 0.918 0.956 2.174 1.630 
ANFIS1 0.891 0.940 2.721 2.060 0.873 0.930 2.673 2.048 

Donja Mrežnica MLPNN3 0.980 0.990 1.274 0.990 0.978 0.989 1.334 1.040 
MLPNN2 0.923 0.959 2.479 1.828 0.923 0.959 2.450 1.801 
MLPNN1 0.882 0.934 3.042 2.374 0.873 0.930 3.115 2.417 
ANFIS3 0.980 0.990 1.297 1.002 0.978 0.989 1.334 1.034 
ANFIS2 0.923 0.959 2.476 1.828 0.923 0.959 2.453 1.798 
ANFIS1 0.882 0.934 3.041 2.374 0.873 0.930 3.117 2.418 

Gornja Dobra MLPNN3 0.919 0.956 1.225 0.925 0.907 0.951 1.724 1.361 
MLPNN2 0.852 0.915 1.630 1.200 0.823 0.901 2.323 1.838 
MLPNN1 0.839 0.906 1.693 1.265 0.794 0.884 2.492 1.874 
ANFIS3 0.916 0.954 1.251 0.948 0.907 0.951 1.716 1.377 
ANFIS2 0.852 0.915 1.630 1.198 0.824 0.902 2.316 1.830 
ANFIS1 0.838 0.906 1.696 1.267 0.814 0.894 2.364 1.858 

Korana 

MLPNN3 0.975 0.987 1.552 1.222 0.969 0.982 1.763 1.408 
MLPNN2 0.932 0.964 2.537 1.933 0.917 0.950 2.831 2.227 
MLPNN1 0.915 0.954 2.823 2.175 0.904 0.949 2.960 2.322 
ANFIS3 0.974 0.986 1.603 1.258 0.968 0.982 1.793 1.435 
ANFIS2 0.933 0.964 2.530 1.933 0.917 0.951 2.823 2.200 
ANFIS1 0.915 0.954 2.823 2.175 0.904 0.949 2.961 2.324 

Slunjčica 

MLPNN3 0.952 0.975 0.767 0.580 0.938 0.956 0.882 0.655 
MLPNN2 0.922 0.958 0.967 0.715 0.909 0.939 1.028 0.765 
MLPNN1 0.853 0.915 1.305 0.979 0.851 0.920 1.209 0.927 
ANFIS3 0.951 0.974 0.771 0.582 0.939 0.957 0.872 0.627 
ANFIS2 0.922 0.958 0.965 0.715 0.909 0.939 1.024 0.764 
ANFIS1 0.853 0.915 1.305 0.978 0.852 0.920 1.208 0.926 

 
 
 
 
 
 
 
 
 
 
 
 

 

 

 
 

Fig. 8. Modeling performances of the MLPNN3 for the climatological year at the six rivers: (a) Čabranka, (b) Donja Dobra, (c) Donja 
Mrežnica, (d) Gornja Dobra, (e) Korana, and (f) Slunjčica. 
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